Светоносный эфир или Среда передачи электромагнитных волн. Светоносный эфир
Светоносный эфир или Среда передачи электромагнитных волн
*
На какие только ухищрения ни пускаются релятивистские физики, чтобы попытаться объяснить факт распространения электромагнитных колебаний. Ясно ведь, что не может быть волны в отсутствии среды. С другой стороны, между звёздами пространство считается пустым, лишённым вещества. Иначе - вакуум, пустота.Чтобы как-то выкрутиться из созданной воспевателями гения иудейского физика всех веков и народов явно неудобной ситуации, эйнштейновцы ввели понятия т.н. физического вакуума. Признав тем самым, что через абсолютную пустоту энергия в виде волн передаваться не может.
Но признать существование в физическом вакууме материи, например, частиц эфира, - это невозможно для горделивых законодателей релятивистской моды в физике. Тогда пошли в ход любые ухищрения, причём все они - чисто шизофренического свойства.
Нет, нет, это отнюдь не фигура речи и уж тем более не преувеличение. Посудите сами: как нормальный здравомыслящий человек, физик или лирик, способен воспринять следующие „научные” „истины”.
„Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами.”
Это, так сказать, затравка. Для разогрева определённых долей мозга читателя, ведущих к восприятию шизофрении. „Нулевой импульс, момент нулевого импулься...”. Т.е. теперь и ноль наполняется... ненулевым содержанием! Это первый приступ шизофрении.
„При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока.”
Вторая стадия. Ввод „квазичастиц”. А зарплату-то релятивистские физики получают вполне себе реальную, отнюдь не „квазизарплату”.
Далее ещё хлеще: „квази” недостаточно чётко вводит читателя в состояние душевнобольного, поэтому наряду с ним вводя „виртуальные частицы”. Т.е. описывая реальность, учёные прибегают к... виртуальности!
„Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей.”Виртуальность реального объекта вновь подкрепляется „нулевым” колебанием. Т.е. колебание как бы есть, но оно нулевое. Мда, есть от чего голове пойти вразнос. Невиртуально. Интересно, а как физики с этим справляются? Или у них не мозги, а квазимозги??! Порождающие нулевые мысли? Виртуальное мышление? И за это дают Нобелей? И этому мы детишек в школах-вузах обучаем? Виртуализируем их сознание?
„В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами.”
А что прикажете делать? Среда-переносчик нужна, но Эйнштейн её запретил. Что делать-то? Ну, давайте скажем, что свойства вакуума „топологически нетривиальны”. А чё, звучит вполне по-научному, да и опровергнуть никто ничего не сможет. Потому что шизофрения не опровергается: она либо вылечивается, либо отсекается. Вместе с головой его носителя.
***
Поскольку традиционное образование забивает головы людей тоннами формул и математических абстракций со школьных и институтских лет, у многих возникают трудности с пониманием такого очевидного факта, как наличие среды для распространения электромагнитных волн.
Официальная наука говорит нам, что электромагнитным волнам среда передачи не нужна, в отличие например от звуковых. Бред получается, ведь волна есть колебание среды. Если нет среды - то что тогда колеблется?
Для особо любознательных придумали понятие электромагнитного поля, которое "появляется" между противоположными зарядами, при всем этом не имея внятного понимания, чем же сам этот заряд является. Понимания нет не только касаемо зарядов, но и касаемо гравитации, инерции, электрического тока. Зато есть кучи формул, названий и знание некоторых свойст и характеристик оных.
Итак, что же это за эфир такой, о котором говорили и писали с древности и до наших дней, точнее до времен Теслы, пока Эйнштейн не вычеркнул его из науки своей(?) теорией относительности?
Как уже было сказано выше, любому виду колебаний нужна среда. Электромагнитные волны не являются в данном случае исключением. Как видно на классическом рисунке в начале поста, взятом из школьной программы, электромагнитные волны имеют длину волны и/или частоту колебания, имеющие обратно-пропорциональную зависимость.
То есть с уменьшением длины волны, частота ее колебаний возрастает, и наоборот. На подобной картинке ниже хорошо показан тот маленький диапазон частот электромагнитных волн, видимых человеческому глазу - оптическое излучение.
Что такое свет? - спрошу я вас. Люди, знакомые со школьной программой физики, непременно ответят мне - поток фотонов. А что же такое фотоны? - спрашиваю я. Субатомные частички, наряду с протонами, нейтронами и электронами - ответите вы мне.Итак имеем кучу названий, определений, формул, но не имеем главного - сути, то есть понимания. Откуда же оно возьмется, если нам со школы отвлекают внимание от сути? Мы уподобляемся наблюдателям забавного карточного фокуса, когда искусные шулера и иллюзионисты отвлекают наше внимание в выгодном им направлении, а пока мы смотрим "не туда", подтасовывают нам карты.
Итак, если фотон - это частичка, переносящая энергию, воспринимаемую нами как свет, тогда звукон - частичка, переносящая энергию, воспринимаемую нами как звук. Если есть фотоны, то почему тогда не быть звуконам? Таким же образом, почему бы тогда не назвать частички инфракрасного излучения, воспринимаего нами как тепло и "антибактериального" ультрафиолетового излучения, к примеру - инфратоном и ультратоном? Бред - скажете вы и... будете правы.
Бред, как и то, что фотон - частичка. Странное дело получается, что одни и те же электромагнитные волны называют то частичками, то излучениями, то волнами, в зависимости от разной длины или частоты. Радиоволны, используемые для связи и навигации, никто не называет частичками, так же как и инфракрасное излучение - тепло, а вот узкий спектр видимого света называют частичками фотонами.
Видимое излучение может вести себя как частичка, например отражаясь от некоторых поверхностей под тем же углом, под которым падает. Но, поглощаясь другими поверхностями - ведет себя как волна, передавая свою энергию этой поверхности.
Волна имеет свою скорость распространения в разных средах, например звук в воздухе распространяется со скоростью 340 м/с, а воде уже со скоростью 1500 м/с. Когда говорят о скорости света 300 миллионов м/с, подразумевают эталонную ее скорость, в так называемом вакууме - в безвоздушном пространстве между Солнцем и Землей, Солнцем и Альфа Центаврой и т д.
Так что происходит со светом, пока он "летит" к нам от Солнца в так называемом вакууме? Являясь электромагнитной волной, свет вдруг "становится" частичкой, летящей в пустоте вакуума, а при подлете к Земле вновь превращается в волну? По такой аналогии можно сказать, что пока водная волна идет от одного берега к другому, самой воды нет. И еще к примеру: пока звуковая волна идет от моего рта к вашему уху, то воздуха, колебаниями которого является звук - также нет. Бредово звучит? Полностью с вами согласен!
Также бредово, как и то, что электромагнитные волны могут существовать без среды передачи, коей является эфир.
Подводя итог сказанному, поразмыслите на досуге, откуда все эти выражения "выйти в эфир", "прямой эфир", "у нас в эфире" и т.д.
Источник
***
ss69100.livejournal.com
Светоносный эфир или Среда передачи электромагнитных волн: kactaheda
Ничто стало всем: был вакуум, стал эфир
Поскольку традиционное образование забивает головы людей тоннами формул и математических абстракций со школьных и институтских лет, у многих возникают трудности с пониманием такого очевидного факта, как наличие среды для распространения электромагнитных волн. Официальная наука говорит нам, что электромагнитным волнам среда передачи не нужна, в отличие например от звуковых. Бред получается, ведь волна есть колебание среды. Если нет среды - то что тогда колеблется? Для особо любознательных придумали понятие электромагнитного поля, которое "появляется" между противоположными зарядами, при всем этом не имея внятного понимания, чем же сам этот заряд является. Понимания нет не только касаемо зарядов, но и касаемо гравитации, инерции, электрического тока. Зато есть кучи формул, названий и знание некоторых свойст и характеристик оных.Итак, что же это за эфир такой, о котором говорили и писали с древности и до наших дней, точнее до времен Теслы, пока Эйнштейн не вычеркнул его из науки своей(?) теорией относительности?Итак, если фотон - это частичка, переносящая энергию, воспринимаемую нами как свет, тогда звукон - частичка, переносящая энергию, воспринимаемую нами как звук. Если есть фотоны, то почему тогда не быть звуконам? Таким же образом, почему бы тогда не назвать частички инфракрасного излучения, воспринимаего нами как тепло и "антибактериального" ультрафиолетового излучения, к примеру - инфратоном и ультратоном? Бред - скажете вы и... будете правы. Бред, как и то, что фотон - частичка. Странное дело получается, что одни и те же электромагнитные волны называют то частичками, то излучениями, то волнами, в зависимости от разной длины или частоты. Радиоволны, используемые для связи и навигации, никто не называет частичками, так же как и инфракрасное излучение - тепло, а вот узкий спектр видимого света называют частичками фотонами.
Видимое излучение может вести себя как частичка, например отражаясь от некоторых поверхностей под тем же углом, под которым падает. Но, поглощаясь другими поверхностями - ведет себя как волна, передавая свою энергию этой поверхности.
Волна имеет свою скорость распространения в разных средах, например звук в воздухе распространяется со скоростью 340 м/с, а воде уже со скоростью 1500 м/с. Когда говорят о скорости света 300 миллионов м/с, подразумевают эталонную ее скорость, в так называемом вакууме - в безвоздушном пространстве между Солнцем и Землей, Солнцем и Альфа Центаврой и т д. Так что происходит со светом, пока он "летит" к нам от Солнца в так называемом вакууме? Являясь электромагнитной волной, свет вдруг "становится" частичкой, летящей в пустоте вакуума, а при подлете к Земле вновь превращается в волну? По такой аналогии можно сказать, что пока водная волна идет от одного берега к другому, самой воды нет. И еще к примеру: пока звуковая волна идет от моего рта к вашему уху, то воздуха, колебаниями которого является звук - также нет. Бредово звучит? Полностью с вами согласен! Также бредово, как и то, что электромагнитные волны могут существовать без среды передачи, коей является эфир.
Подводя итог сказанному, поразмыслите на досуге, откуда все эти выражения "выйти в эфир", "прямой эфир", "у нас в эфире" и т.д.
kactaheda.livejournal.com
Светоносный эфир - grease monkey
В рамках ньютоновской системы невозможно ни установить абсолютный центр Вселенной, ни убедиться в том, что этот центр неподвижен. Идея абсолютного и неподвижного пространства, возможно, наглядна и удобна, однако такое пространство оказывается принципиально ненаблюдаемым. Между тем уравнения электричества, магнетизма и распространения света, полученные Максвеллом, не остаются неизменными при переходе от одной инерциальной системы к другой.
Это означает по крайней мере то, что можно найти систему отсчета, которая покоится относительно «световой среды» (эфира), а, следовательно, является выделенной.
Нее материальные волны, t. it is. волны, с помощью которых нам удалось создать абстрактное понятие волны, представляют собой возмущения, распространяющиеся в какой-нибудь среде. Человеку девятнадцатого века было трудно согласиться с мыслью, что свет, или электромагнитная волна, может быть некой абстрактной сущностью, распространяющейся через ничто. В статье, опубликованной в «Британской энциклопедии», Максвелл писал:
«Доказательства в пользу существования светоносного эфира получили прочную опору, когда были открыты новые явления света и других излучений; и свойства этой среды, выведенные на основании явлений света, оказались совершенно такими же, какие требуются для объяснения электромагнитных явлений… С какими бы трудностями в наших попытках выработать состоятельное представление о строении эфира ни приходилось нам сталкиваться, но несомненно, что межпланетное и межзвездное пространства не суть пространства пустые, но заняты материальной субстанцией, или телом, самым обширным и, нужно думать, самым однородным, какое только нам известно».
Дебаты, касающиеся светоносного эфира и нашего к нему отношения, непрерывно ширились, и к концу девятнадцатого века они достигли, если можно так выразиться, лихорадочной стадии. Причина была не только в том, что чувствовалась (как чувствовал и Максвелл) потребность в какой-то среде, через которую распространяются электромагнитные и световые волны. Пока хотели понять, нужен ли эфир пли же можно обойтись без него, и пока он служил в качестве наглядной модели или помогал механической интерпретации распространения света, ажиотаж не возникал. Интерес к эфиру чрезвычайно возрос к концу девятнадцатого века, когда стало ясно, что созданная Максвеллом электромагнитная теория, оказавшаяся поразительно успешной, свидетельствует как будто о том, что эфир можно наблюдать.
Суть многих опытов, проведенных во второй половине девятнадцатого века, сводилась к следующему. Согласно теории электромагнитных волн Максвелла, свет распространяется со скоростью с=3*1010см/с. Спрашивается, относительно чего свет движется с такой скоростью? Когда в обыденной жизни нам приходится определять скорость, мы относим ее к какой-нибудь системе отсчета. Скорости самолета относительно воздуха и земли различны. Если самолет летит по ветру, скорость которого 100 км/ч, а его собственная скорость относительно воздуха 500 км/ч, значит, относительно земли самолет летит со скоростью 600 км/ч. То же можно сказать и о скорости корабля, плывущего по течению, о скорости крысы, бегущей по ленте транспортера, и т. д. Относительно чего же тогда движется свет со скоростью с?
Ответ на этот вопрос фактически не содержится ни в теории Максвелла, ни в теории Юнга и Френеля. По-видимому, если свет — волна и если волна распространяется в среде, то свет движется со скоростью с относительно среды. Следовательно, если электромагнитные волны действительно тождественны свету, то свет, или электромагнитные волны, распространяется со скоростью с относительно светоносного эфира.
Из этого рассуждения вытекают различные интересные следствия. supposing, eg, что мы сами перемещаемся относительно эфира. Спрашивается, повлияет ли наше движение относительно эфира (относительно которого свет распространяется со скоростью с) на наши наблюдения оптических явлений? К концу девятнадцатого столетия подобный вопрос задавался неоднократно. И всякий раз никакого влияния обнаружить не удавалось; создавалось впечатление, будто Земля неподвижна относительно эфира. Максвелл пророчески заметил:
«Весь вопрос о состоянии светоносной среды возле Земли и об ее отношении к обыкновенной материи еще далеко не решен опытом».
Поделиться ссылкой:
Liked this:
Like Loading...
Похожее
tehnar.net.ua
Светоносный эфир или Среда передачи электромагнитных волн
Ничто стало всем: был вакуум, стал эфир
Поскольку традиционное образование забивает головы людей тоннами формул и математических абстракций со школьных и институтских лет, у многих возникают трудности с пониманием такого очевидного факта, как наличие среды для распространения электромагнитных волн. Официальная наука говорит нам, что электромагнитным волнам среда передачи не нужна, в отличие например от звуковых. Бред получается, ведь волна есть колебание среды. Если нет среды - то что тогда колеблется? Для особо любознательных придумали понятие электромагнитного поля, которое "появляется" между противоположными зарядами, при всем этом не имея внятного понимания, чем же сам этот заряд является. Понимания нет не только касаемо зарядов, но и касаемо гравитации, инерции, электрического тока. Зато есть кучи формул, названий и знание некоторых свойст и характеристик оных.Итак, что же это за эфир такой, о котором говорили и писали с древности и до наших дней, точнее до времен Теслы, пока Эйнштейн не вычеркнул его из науки своей(?) теорией относительности?Как уже было сказано выше, любому виду колебаний нужна среда. Электромагнитные волны не являются в данном случае исключением. Как видно на классическом рисунке в начале поста, взятом из школьной программы, электромагнитные волны имеют длину волны и/или частоту колебания, имеющие обратно-пропорциональную зависимость. То есть с уменьшением длины волны, частота ее колебаний возрастает, и наоборот. На подобной картинке ниже хорошо показан тот маленький диапазон частот электромагнитных волн, видимых человеческому глазу - оптическое излучение. Что такое свет? - спрошу я вас. Люди, знакомые со школьной программой физики, непременно ответят мне - поток фотонов. А что же такое фотоны? - спрашиваю я. Субатомные частички, наряду с протонами, нейтронами и электронами - ответите вы мне. Итак имеем кучу названий, определений, формул, но не имеем главного - сути, то есть понимания. Откуда же оно возьмется, если нам со школы отвлекают внимание от сути? Мы уподобляемся наблюдателям забавного карточного фокуса, когда искусные шулера и иллюзионисты отвлекают наше внимание в выгодном им направлении, а пока мы смотрим "не туда", подтасовывают нам карты.
Итак, если фотон - это частичка, переносящая энергию, воспринимаемую нами как свет, тогда звукон - частичка, переносящая энергию, воспринимаемую нами как звук. Если есть фотоны, то почему тогда не быть звуконам? Таким же образом, почему бы тогда не назвать частички инфракрасного излучения, воспринимаего нами как тепло и "антибактериального" ультрафиолетового излучения, к примеру - инфратоном и ультратоном? Бред - скажете вы и... будете правы. Бред, как и то, что фотон - частичка. Странное дело получается, что одни и те же электромагнитные волны называют то частичками, то излучениями, то волнами, в зависимости от разной длины или частоты. Радиоволны, используемые для связи и навигации, никто не называет частичками, так же как и инфракрасное излучение - тепло, а вот узкий спектр видимого света называют частичками фотонами.
Видимое излучение может вести себя как частичка, например отражаясь от некоторых поверхностей под тем же углом, под которым падает. Но, поглощаясь другими поверхностями - ведет себя как волна, передавая свою энергию этой поверхности.
Волна имеет свою скорость распространения в разных средах, например звук в воздухе распространяется со скоростью 340 м/с, а воде уже со скоростью 1500 м/с. Когда говорят о скорости света 300 миллионов м/с, подразумевают эталонную ее скорость, в так называемом вакууме - в безвоздушном пространстве между Солнцем и Землей, Солнцем и Альфа Центаврой и т д. Так что происходит со светом, пока он "летит" к нам от Солнца в так называемом вакууме? Являясь электромагнитной волной, свет вдруг "становится" частичкой, летящей в пустоте вакуума, а при подлете к Земле вновь превращается в волну? По такой аналогии можно сказать, что пока водная волна идет от одного берега к другому, самой воды нет. И еще к примеру: пока звуковая волна идет от моего рта к вашему уху, то воздуха, колебаниями которого является звук - также нет. Бредово звучит? Полностью с вами согласен! Также бредово, как и то, что электромагнитные волны могут существовать без среды передачи, коей является эфир.
Подводя итог сказанному, поразмыслите на досуге, откуда все эти выражения "выйти в эфир", "прямой эфир", "у нас в эфире" и т.д.
imhotype.livejournal.com
Светоносный эфир Вики
Эфир (светоносный эфир, от др.-греч. αἰθήρ, верхний слой воздуха; лат. aether) — гипотетическая всепроникающая среда[1], колебания которой проявляют себя как электромагнитные волны (в том числе как видимый свет). Концепция светоносного эфира была выдвинута в XVII веке Рене Декартом[2] и получила подробное обоснование в XIX веке в рамках волновой оптики и электромагнитной теории Максвелла. Эфир рассматривался также как материальный аналог ньютоновского абсолютного пространства. Существовали и другие варианты теории эфира.
В конце XIX века в теории эфира возникли непреодолимые трудности, вынудившие физиков отказаться от понятия эфира и признать электромагнитное поле самодостаточным физическим объектом, не нуждающимся в дополнительном носителе. Абсолютное пространство было упразднено специальной теорией относительности. Неоднократные попытки отдельных учёных возродить концепцию эфира в той или иной форме (например, связать эфир с физическим вакуумом) успеха не имели[1].
История[ | код]
Античные представления[ | код]
Из немногочисленных дошедших до нас трудов древнегреческих учёных можно понять, что эфир тогда понимался как особое небесное вещество, «заполнитель пустоты» в Космосе[3]. Платон в диалоге «Тимей» сообщает, что Бог создал мир из эфира. Лукреций Кар в поэме «О природе вещей» упоминает, что «эфир питает созвездия», то есть светила состоят из сгущённого эфира. Иначе представлял эфир Анаксагор — по его мнению, эфир похож на земной воздух, только более горячий, сухой и разрежённый[4].
Демокрит и другие атомисты термин эфир не использовали, их система мира включала лишь атомы и пустоту[5].
Несколько более подробная картина изложена в трудах Аристотеля. Он также считал, что планеты и другие небесные тела состоят из эфира (или квинтэссенции), который есть «пятый элемент» природы, причём, в отличие от остальных (огня, воды, воздуха и земли), вечный и неизменный. Аристотель писал: «Солнце не состоит из огня; оно есть огромное скопление эфира; теплота Солнца причиняется действием его на эфир во время обращения вокруг Земли». Эфир также заполняет весь внеземной Космос, начиная со сферы Луны; из приведенной цитаты можно сделать вывод, что эфир Аристотеля передаёт свет от Солнца и звёзд, а также тепло от Солнца. Аристотелевское понимание термина переняли средневековые схоласты; оно продержалось в науке до XVII века.
Эфир Декарта (XVII век)[ | код]
Подробно разработанная гипотеза о существовании физического эфира была выдвинута в 1618 году Рене Декартом и впервые изложена в труде «Мир, или трактат о свете» (1634), а позже развита и опубликована в «Первоначалах философии» (1644)[2].
Декарт впервые чётко утверждал наличие у мирового эфира обычных механических свойств вещества и возродил в новой физике, таким образом, понятие эфира в духе Анаксагора (вместо дискредитированного к этому времени аристотелева эфира как «небесного» элемента). Понятие мирового эфира в интерпретации Декарта удерживалось вплоть до начала XX века.
В соответствии со своей (картезианской) натурфилософией Декарт рассматривал всю Вселенную как неопределённо протяжённую материю, принимающую различные формы под действием присущего ей движения[6].
Декарт отрицал пустоту и считал, что всё пространство заполнено первоматерией или её производными. Первоматерию он представлял как абсолютно плотное тело, каждая из частей которого занимает часть пространства, пропорциональное её величине и не способна к растяжению или сжатию, а также не может занимать одно и то же место с другой частью материи. Эта материя способна к делению на части любой формы под действием приложенной силы, и каждая из её частей может обладать любым допустимым движением[7]. Частицы материи сохраняют свою форму, покуда у них имеется приобретённое движение. При потере движения частицы способны к объединению[8]. Он предполагал, что под действием приложенной силы частицы первоматерии стачивали свои углы в различных кругообразных движениях. Образовавшиеся сферы формировали вихри, а осколки заполняли промежутки между ними.
Эфирные вихри в представлении Декарта («Принципы философии», том III)Невидимый эфир Декарта заполнял всё свободное от материи пространство Вселенной, однако не оказывал сопротивления при движении в нём вещественных тел. Декарт разделил «эфирные материи» по их свойствам на три категории[9].
- Элемент огня — самая тонкая и самая проникающая жидкость, сформированная в процессе стачивания частиц материи. Частицы огня самые маленькие и обладают самой большой скоростью. Они разнообразно делятся при столкновении с другими телами и заполняют все промежутки между ними. Из них состоят звёзды и Солнце.
- Элемент воздуха — сферы, которые формируют тончайшую жидкость по сравнению с видимой материей, но в отличие от элемента огня обладают известной величиной и фигурой благодаря наличию осевого вращения. Это вращение позволяет сохранять форму частицы даже в состоянии покоя относительно окружающих тел. Из этих частиц состоит космос, не занятый звёздами или планетами, и они образуют собственно светоносный эфир.
- Элемент земли — крупные частицы первоматерии, движения в которых очень мало или оно полностью отсутствует. Из этих частиц состоят планеты.
Механические свойства эфира, а именно абсолютная твёрдость частиц второго элемента и их плотное прилегание друг к другу, способствуют мгновенному распространению изменений в них. Когда импульсы изменений достигают Земли, они воспринимаются нами в качестве тепла и света[10].
Изложенную систему мира Декарт применил для объяснения не только световых, но и других явлений. Причину тяжести (которую он считал присущей только земным предметам) Декарт видел в давлении окружающих Землю эфирных частиц, которые движутся быстрее самой Земли[11]. Магнетизм вызван циркуляцией вокруг магнита двух встречных потоков мельчайших винтообразных частиц с противоположной резьбой, поэтому два магнита могут не только притягиваться, но и отталкиваться. За электростатические явления аналогично ответственны частицы лентообразной формы[12]. Декарт построил также оригинальную теорию цвета, по которой разные цвета получаются из-за разных скоростей вращения частиц второго элемента[13][14].
Теории света после Декарта[ | код]
Учение Декарта о свете было существенно развито Гюйгенсом в его «Трактате о свете» (Traité de la lumière, 1690). Гюйгенс рассматривал свет как волны в эфире и разработал математические основы волновой оптики.
В конце XVII века были открыты несколько необычных оптических явлений, которые следовало согласовать с моделью светоносного эфира: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин, изучено Гюйгенсом), оценка скорости света (1675, Рёмер)[15]. Наметились два варианта физической модели света:
- Эмиссионная (или корпускулярная) теория: свет есть поток частиц, излучаемых источником. В пользу этого мнения говорила прямолинейность распространения света, на которой основана геометрическая оптика, однако дифракция и интерференция плохо укладывались в эту теорию.
- Волновая: свет есть всплеск в эфире. Надо принять во внимание, что под волной тогда понимали не бесконечное периодическое колебание, как в современной теории, а одиночный импульс[16]; по этой причине объяснения световых явлений с волновых позиций были мало правдоподобны.
Интересно отметить, что концепция светоносного эфира Декарта—Гюйгенса стала вскоре общепринятой в науке и не пострадала от развернувшихся в XVII—XVIII веках споров картезианцев и атомистов[17][18], а также сторонников эмиссионной и волновой теории. Даже Исаак Ньютон, склонявшийся скорее к эмиссионной теории, допускал, что в указанных эффектах принимает участие и эфир[19]. В трудах Ньютона эфир упоминается очень редко (в основном в ранних работах), хотя в личных письмах он иногда позволял себе «измышлять гипотезы» о возможной роли эфира в оптических, электрических и гравитационных явлениях. В последнем абзаце своего основного труда «Математические начала натуральной философии» Ньютон пишет: «Теперь следовало бы кое-что добавить о некоем тончайшем эфире, проникающем все сплошные тела и в них содержащемся». Далее он перечисляет предполагавшиеся в тот период примеры физической роли эфира:
Частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на большие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира от внешних органов чувств мозгу и от мозга мускулам.
Ньютон, однако, никак не комментирует все эти гипотезы, ограничившись замечанием: «Но это не может быть изложено вкратце, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны»[20].
Благодаря авторитету Ньютона, эмиссионная теория света в XVIII веке стала общепринятой. Эфир рассматривался не как носитель, но как переносчик световых частиц, а преломление и дифракцию света объясняли изменением плотности эфира — вблизи тел (дифракция) или при переходе света из одной среды в другую (преломление)[21]. В целом эфир как часть системы мира отошёл в XVIII веке на задний план, однако теория эфирных вихрей сохранилась, и были безуспешные попытки применить её для объяснения магнетизма и гравитации[22].
Развитие моделей эфира в XIX веке[ | код]
Волновая теория света[ | код]
В начале XIX века волновая теория света, рассматривавшая свет как волны в эфире, одержала решительную победу над эмиссионной теорией. Первый удар по эмиссионной теории нанёс английский учёный-универсал Томас Юнг, в 1800 году разработавший волновую теорию интерференции (и ввёл сам этот термин) на основе сформулированного им принципа суперпозиции волн. По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах.
Огюстен Жан ФренельВначале теория Юнга была встречена враждебно. Как раз в это время было глубоко изучено явление двойного лучепреломления и поляризации света, воспринятое как решающее доказательство в пользу эмиссионной теории. Но тут в поддержку волновой модели (ничего не зная о Юнге) выступил Огюстен Жан Френель. Рядом остроумных опытов он продемонстрировал чисто волновые эффекты, совершенно необъяснимые с позиций корпускулярной теории, а его мемуар, содержащий всестороннее исследование с волновых позиций и математическую модель всех известных тогда свойств света (кроме поляризации), победил на конкурсе Парижской Академии наук (1818). Курьёзный случай описывает Араго: на заседании комиссии академиков Пуассон выступил против теории Френеля, так как из неё следовало, что при определённых условиях в центре тени от непрозрачного кружка мог появиться ярко освещённый участок. На следующем заседании Френель продемонстрировал членам комиссии этот эффект.
Юнг и Френель изначально рассматривали свет как упругие (продольные) колебания разрежённого, но чрезвычайно упругого эфира, подобные звуку в воздухе. Любой источник света запускает упругие колебания эфира, которые происходят с гигантской, нигде больше не отмеченной в природе частотой, благодаря чему достигается распространение их с колоссальной скоростью[23]. Любое вещественное тело притягивает эфир, который проникает внутрь тела и сгущается там. От плотности эфира в прозрачном теле зависел коэффициент преломления света[24].
Оставалось понять механизм поляризации. Ещё в 1816 году Френель обсуждал возможность того, что световые колебания эфира не продольны, а поперечны. Это легко объяснило бы явление поляризации. Юнг в это время тоже пришёл к такой идее. Однако поперечные колебания ранее встречались только в несжимаемых твёрдых телах, в то время как эфир считали близким по свойствам к газу или жидкости. В 1822—1826 годах Френель представил мемуары с описанием новых опытов и полную теорию поляризации, сохраняющую значение и в наши дни.
Модель Коши-Стокса[ | код]
Интерес и доверие к концепции эфира в XIX веке резко возросли. Следующие (после 1820-х) почти сто лет обозначены триумфальным успехом волновой оптики во всех областях. Классическая волновая оптика была завершена, поставив в то же время труднейший вопрос: что же представляет собой эфир?
Когда выяснилось, что световые колебания строго поперечны, встал вопрос о том, какими свойствами должен обладать эфир, чтобы допускать поперечные колебания и исключить продольные. А. Навье в 1821 году получил общие уравнения распространения возмущений в упругой среде. Теория Навье была развита О. Л. Коши (1828), который показал, что, вообще говоря, продольные волны также должны существовать[25].
Френель выдвинул гипотезу, согласно которой эфир несжимаем, но допускает поперечные сдвиги. Такое предположение трудно согласовать с полной проницаемостью эфира по отношению к веществу. Д. Г. Стокс объяснил затруднение тем, что эфир подобен смоле: при быстрых деформациях (излучение света) он ведёт себя как твёрдое тело, а при медленных (скажем, при движении планет) пластичен. В 1839 году Коши усовершенствовал свою модель, создав теорию сжимающегося (лабильного) эфира, позднее доработанную У. Томсоном.
Чтобы все эти модели не рассматривались как чисто спекулятивные, из них следовало формально вывести основные эффекты волновой оптики. Однако подобные попытки имели мало успеха. Френель предположил, что эфир состоит из частиц, величина которых сравнима с длиной световой волны. При этом дополнительном предположении Коши удалось обосновать явление дисперсии света. Однако попытки связать, например, френелевскую теорию преломления света с какой-либо моделью эфира оказались неудачны[26].
Эфир и электромагнетизм[ | код]
Фарадей относился к эфиру скептически и выражал неуверенность в его существовании[27]. С открытием Максвеллом уравнений классической электродинамики теория эфира получила новое содержание.
В ранних работах Максвелл использовал гидродинамические и механические модели эфира, однако подчёркивал, что они служат только для пояснения с помощью наглядной аналогии. Необходимо иметь в виду, что векторного анализа тогда ещё не существовало, и гидродинамическая аналогия понадобилась Максвеллу, в первую очередь, для разъяснения физического смысла дифференциальных операторов (дивергенция, ротор и др.). Например, в статье «О Фарадеевых силовых линиях» (1855) Максвелл пояснил, что используемая в модели воображаемая жидкость «представляет собой исключительно совокупность фиктивных свойств, составленную с целью представить некоторые теоремы чистой математики в форме, более наглядной и с большей лёгкостью применимой к физическим задачам, чем форма, использующая чисто алгебраические символы»[28]. Позднее (с 1864 года) Максвелл исключил из своих трудов рассуждения по аналогии[29]. Конкретных моделей эфира Максвелл не разрабатывал и не опирался на какие-либо свойства эфира, кроме способности поддерживать ток смещения, то есть перемещение электромагнитных колебаний в пространстве.
Когда эксперименты Г. Герца подтвердили теорию Максвелла, эфир стал рассматриваться как общий носитель света, электричества и магнетизма. Волновая оптика превратилась в органичную часть теории Максвелла, и возникла надежда построить физическую модель эфира на этом фундаменте. Исследованиями в этой области занимались крупнейшие учёные мира. Часть из них (например, сам Максвелл, Умов и Гельмгольц), хотя писала о свойствах эфира, фактически изучала свойства электромагнитного поля. Другая часть (например, Д. Г. Стокс, У. Томсон) пыталась раскрыть природу и свойства собственно эфира — оценить давление в нём, плотность его массы и энергии, связать с атомной теорией.
Химизм в попытках понимания эфира (Д. И. Менделеев)[ | код]
Д. И. Менделеев. Опыт химического понимания мирового эфира. Нью-Йорк — Лондон — Бомбей. 1904В трудах Д. И. Менделеева этот вопрос имеет непосредственное отношение к осмыслению им физических причин периодичности. Поскольку свойства элементов пребывают в периодической зависимости от атомных весов (массы), учёный предполагал использовать эти закономерности для решения настоящей проблемы, — определяя причины сил тяготения и благодаря изучению свойств передающей их среды.[30]
Как уже отмечено, предполагалось, что «эфир», заполняющий межпланетное пространство, является средой, передающей свет, тепло и гравитацию. В контексте таких представлений исследования сильно разреженных газов представлялось возможным путём к детерминации названной субстанции, когда свойства «обычного» вещества уже не способны бы были скрывать свойства «эфира»[30].
В одной из своих гипотез Д. И. Менделеев руководствовался тем, что специфическим состоянием сильно разреженных газов воздуха мог оказаться «эфир» или некий неизвестный инертный газ с очень малым весом, то есть наилегчайший химический элемент. Учёный пишет на оттиске из «Основ химии», на эскизе периодической системы 1871 года: «Легче всех эфир, в миллионы раз»; в рабочей тетради 1874 года он более ясно высказывает свои соображения: «При нулевом давлении у воздуха есть некоторая плотность, это и есть эфир!». Но в его публикациях той поры эти мысли не нашли отражения. Открытие в конце XIX века инертных газов актуализировало вопрос о химической сущности мирового эфира. По предложению Уильяма Рамзая Менделеев включает в периодическую таблицу нулевую группу, оставляя место для более лёгких, чем водород, элементов. По мнению Менделеева, группа инертных газов могла быть дополнена коронием и легчайшим, пока неизвестным элементом, названным им ньютонием, который и составляет мировой эфир[31]
Свои взгляды в апреле 1902 года он развёрнуто излагает в эссе «Попытка химического понимания мирового эфира» (опубликовано на английском языке в 1904 году, на русском — в 1905 году). В заключительной части этого труда Д. И. Менделеев пишет[30][32]:
Представляя эфир газом, обладающим указанными признаками и относящимся к нулевой группе, я стремлюсь прежде всего извлечь из периодического закона то, что он может дать, реально объяснить вещественность и всеобщее распространение эфирного вещества повсюду в природе и его способность проникать все вещества не только газо- или парообразные, но и твёрдые и жидкие, так как атомы наиболее легких элементов, из которых состоят наши обычные вещества, всё же в миллионы раз тяжелее эфирных и, как надо думать, не изменят сильно своих отношений от присутствия столь лёгких атомов, каковы атомы или эфирные. Понятно само собой, что вопросов является затем и у меня самого целое множество, что на большую часть из них мне кажется невозможным отвечать, и что в изложении своей попытки я не думал ни поднимать их, ни пытаться отвечать на те из них, которые мне кажутся разрешимыми. Писал не для этого свою «попытку», а только для того, чтобы высказаться в таком вопросе, о котором многие, знаю, думают, и о котором надо же начать говорить.
Ещё в ранних своих работах Д. И. Менделеев пришёл к методологическим принципам и положениям, получившим развитие в его последующих исследованиях. Он стремится подходить к решению того или иного вопроса, следуя этим общим принципам, создавая философскую концепцию, в пределах которой будет проводиться анализ конкретных данных. Это характерно и для исследований, касающихся данной темы, которые выразились результатами, к ней прямого отношения не имеющими.[33] Движимый идеей обнаружения эфира, Д. И. Менделеев экспериментально начал изучать разреженные газы, и, занимаясь этой темой, сформулировал или подтвердил положения кинетической теории и термодинамики, теоретически обосновал условия поведения сжатых газов[34]: получил уравнение идеального газа, содержащее выведенную им универсальную газовую постоянную, и получил вириальные разложения, которые находятся в полном соответствии с первыми приближениями в известных сейчас уравнениях для реальных газов. Очень ценным, но несколько преждевременным, было предложение Д. И. Менделеева о введении термодинамической шкалы температур[30].
Эфир и гравитация[ | код]
В течение XVII—XIX веков были сделаны многочисленные попытки связать эфир с гравитацией и подвести физическую основу под ньютоновский закон всемирного тяготения. Исторические обзоры упоминают более 20 таких моделей разной степени разработанности. Чаще других высказывались следующие идеи[35][36][37].
- Гидростатическая модель: поскольку эфир, как считалось, скапливается внутри материальных тел, его давление в пространстве между телами ниже, чем в удалении от этих тел. Избыточное давление сбоку «подталкивает» тела друг к другу.
- Тяготение есть результат распространения через эфир колебаний («пульсаций») атомов вещества.
- В эфире имеются «источники» и «стоки», и их взаимовлияние проявляется как тяготение.
- Эфир содержит множество беспорядочно движущихся микрочастиц (корпускул), и тяготение двух тел возникает из-за того, что каждое тело «экранирует» другое от этих частиц, тем самым создавая дисбаланс сил (подталкивающих корпускул получается больше, чем расталкивающих).
Все эти модели подверглись аргументированной критике и не смогли добиться широкого научного признания[36].
Гидростатическая модель[ | код]
Впервые эта модель была опубликована в списке проблем и вопросов, которые Ньютон поместил в конце своего труда «Оптика» (1704). Сам Ньютон ни разу не выступил в поддержку такого подхода, ограничившись известным высказыванием: «Причину этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю». Данная идея никогда не получала сколько-нибудь серьёзного развития[36].
Другой вариант этой модели предложил Роберт Гук: притяжение вызывают колебания атомов, передающиеся от тела к телу через эфир. Эта мысль получила развитие в XIX веке в виде «пульсационных» теорий[36].
«Пульсационные» теории[ | код]
Среди «пульсационных» теорий наиболее видное место занимает модель норвежского физика Карла Бьеркнеса, который одним из первых попытался создать единую теорию всех полей. Публикации Бьеркнеса (1870-е годы) развивали следующую идею: тела в эфире ведут себя подобно синхронно пульсирующим телам в несжимаемой жидкости, между которыми, как известно, возникает притяжение, обратно пропорциональное квадрату расстояния. Концепцию Бьеркнеса поддержали английские физики Фредерик Гатри (Frederick Guthrie) и Уильям Хикс (William Mitchinson Hicks), последний теоретически описал «отрицательную материю», чьи атомы колеблются в противофазе, и антигравитацию. В 1909 году теория Бьеркнеса была развита Чарльзом Бертоном (Charles V. Burton), который приписал пульсации электронам внутри тел[38].
«Пульсационные» модели подверглись резкой критике, против них были выдвинуты следующие возражения[38].
- Общепринятая в конце XIX века теория эфира рассматривала его как упругую среду, поэтому свойство несжимаемости следовало либо как-то обосновать, либо допустить существование двух в корне различных видов эфира.
- Непонятны причины синхронности колебаний атомов.
- Для поддержания незатухающих пульсаций необходимы какие-то внешние силы.
Источники/стоки в эфире[ | код]
Основными авторами этой группы моделей были английские учёные Карл Пирсон (K. Pearson) и Джордж Адольф Шотт (George Adolphus Schott). Пирсон, специалист по гидродинамике, сначала поддерживал пульсационные теории, но в 1891 году предложил модель атома как системы эфирных струй, с помощью которой надеялся объяснить как электромагнитные, так и гравитационные эффекты[39]:
Первичной субстанцией является жидкая невращающаяся среда, а атомы или элементы материи суть струи этой субстанции. Откуда взялись в трёхмерном пространстве эти струи, сказать нельзя; в возможности познания физической Вселенной теория ограничивается их существованием. Может быть, их возникновение связано с пространством более высокой размерности, чем наше собственное, но мы о нём ничего знать не можем, мы имеем дело лишь с потоками в нашу среду, со струями эфира, которые мы предложили именовать «материей».
Масса, по Пирсону, определяется средней скоростью струй эфира. Из этих общих соображений Пирсон сумел вывести ньютоновский закон тяготения. Пирсон не объяснил, откуда и куда текут эфирные струи. Этот аспект попытался прояснить Шотт, предположив, что радиус электрона со временем увеличивается, и это «раздувание» являются источником движения эфира. В варианте Шотта постоянная тяготения меняется со временем[39].
Теория Лесажа[ | код]
Притяжение по Лесажу: каждое тело «экранирует» другое от давления корпускул, создавая равнодействующую в сторону сближенияИдея этой остроумной механической модели тяготения появилась ещё во времена Ньютона (Никола Фатио де Дюилье, 1690), автором развитой теории стал швейцарский физик Жорж Луи Лесаж, первая публикация которого появилась в 1782 году[40]. Суть идеи показана на рисунке: пространство заполнено некими быстро и хаотично движущимися эфирными корпускулами, их давление на одиночное тело уравновешено, в то время как давление на два близких тела несбалансировано (в силу частичного экранирования со стороны тел), что создаёт эффект взаимного притяжения. Увеличение массы тела означает увеличение числа составляющих это тело атомов, из-за чего пропорционально увеличивается число столкновений с корпускулами и величина давления с их стороны, поэтому сила притяжения пропорциональна массе тела. Отсюда Лесаж вывел закон тяготения Ньютона[41].
Критики теории Лесажа отмечали множество её слабых мест, особенно с точки зрения термодинамики. Джеймс Максвелл показал, что в модели Лесажа энергия непременно перейдёт в теплоту и быстро расплавит любое тело. В итоге Максвелл сделал вывод[42]:
Мы посвятили этой теории больше места, нежели, по-видимому, она заслуживает, потому что она остроумна и потому что это — единственная теория о причине тяготения, которая была настолько подробно развита, что было возможно обсуждать аргументы за и против неё. Видимо, она не может объяснить нам, почему температура тел остается умеренной, между тем как их атомы выдерживают подобную бомбардировку.
Анри Пуанкаре подсчитал (1908), что скорость корпускул должна быть на много порядков выше скорости света, и их энергия испепелила бы все планеты[41]. Были отмечены и непреодолимые логические трудности[36]:
- Если тяготение вызвано экранированием, то Луна в те моменты, когда она находится между Землёй и Солнцем, должна существенно влиять на силу притяжения этих тел и, соответственно, на траекторию Земли, однако ничего подобного в реальности не наблюдается.
- Быстро движущееся тело должно испытывать спереди избыточное давление со стороны корпускул.
Попытка Джорджа Дарвина заменить корпускулы на волны в эфире оказалась также неудачной[43]. В обзоре 1910 года модель Лесажа уверенно характеризуется как несостоятельная[41].
Трудности в теории эфира (конец XIX — начало XX века)[ | код]
В 1728 году английский астроном Брэдли открыл аберрацию света: все звёзды описывают на небосводе малые круги с периодом в один год. С точки зрения эфирной теории света это означало, что эфир неподвижен, и его кажущееся смещение (при движении Земли вокруг Солнца) по принципу суперпозиции отклоняет изображения звёзд. Френель, однако, допускал, что внутри движущегося вещества эфир частично увлекается. Эта точка зрения, казалось, нашла подтверждение в опытах Физо.
Максвелл в 1868 году предложил схему решающего опыта, который после изобретения интерферометра смог осуществить в 1881 году американский физик Майкельсон. Позже Майкельсон и Эдвард Морли повторили опыт несколько раз с возрастающей точностью, но результат был неизменно отрицательным — «эфирного ветра» не существовало.
В 1892 году Г. Лоренц и независимо от него Дж. Фицджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения, из-за чего «эфирный ветер» становится сложнее обнаружить. Оставался, однако, неясным вопрос — отчего длина сокращается в точности в такой степени, чтобы сделать обнаружение эфира (точнее, движения относительно эфира) невозможным. В это же время были открыты преобразования Лоренца, которые вначале посчитали специфическими для электродинамики. Эти преобразования объясняли лоренцево сокращение длины, но были несовместимы с классической механикой, основанной на преобразованиях Галилея. Анри Пуанкаре показал, что преобразования Лоренца эквивалентны принципу относительности для электромагнитного поля; он считал, что эфир существует, но принципиально не может быть обнаружен.
А. Эйнштейн, 1905 г.Физическая сущность преобразований Лоренца раскрылась после работ Эйнштейна. В статье 1905 года Эйнштейн рассмотрел два постулата: всеобщий принцип относительности и постоянство скорости света. Из этих постулатов сразу вытекали преобразования Лоренца (уже не только для электродинамики), сокращение длины и относительность одновременности событий. Эйнштейн указал в этой же статье на ненужность эфира, поскольку никаких разумных физических атрибутов приписать ему не удалось, а всё то, что считалось динамическими свойствами эфира, вобрала в себя кинематика специальной теории относительности (СТО). С этого момента электромагнитное поле стало рассматриваться не как энергетический процесс в эфире, а как самостоятельный физический объект.
Новые представления победили не сразу, ряд физиков ещё несколько десятилетий после 1905 года делали попытки восстановить доверие к эфирной модели. Дейтон Миллер в 1924 году объявил, что обнаружил «эфирный ветер». Результат Миллера не подтвердился, а намного более точные измерения (различными методами) вновь показали, что «эфирный ветер» отсутствует[45]. Другие физики пытались использовать для доказательства существования эфира эффект Саньяка, однако это явление полностью объясняется в рамках теории относительности[46]. Исследуются также возможные границы применимости теории относительности[47].
Причины отказа от концепции эфира[ | код]
Главной причиной, по которой физическое понятие эфира было отвергнуто, стал тот факт, что это понятие после разработки СТО оказалось излишним. Из других причин можно назвать противоречивые атрибуты, приписываемые эфиру — неощутимость для вещества, поперечная упругость, немыслимая по сравнению с газами или жидкостями скорость распространения колебаний и др. Дополнительным аргументом стало доказательство дискретной (квантовой) природы электромагнитного поля, несовместимое с гипотезой непрерывного эфира.
В своей статье «Принцип относительности и его следствия в современной физике» (1910) А. Эйнштейн детально объяснил, почему концепция светоносного эфира несовместима с принципом относительности. Рассмотрим, например, магнит, движущийся поперёк замкнутого проводника. Наблюдаемая картина зависит только от относительного движения магнита и проводника и включает появление в последнем электрического тока. Однако с точки зрения теории эфира в разных системах отсчёта картина существенно разная. В системе отсчёта, связанной с проводником, при перемещении магнита меняется напряжённость магнитного поля в эфире, вследствие чего создаётся электрическое поле с замкнутыми силовыми линиями, в свою очередь создающее ток в проводнике. В системе отсчёта, связанной с магнитом, электрическое поле не возникает, а ток создаётся прямым действием изменения магнитного поля на электроны движущегося проводника. Таким образом, реальность процессов в эфире зависит от точки наблюдения, что в физике недопустимо[48].
Позже, после создания общей теории относительности (ОТО), Эйнштейн предложил возобновить применение термина, изменив его смысл, а именно — понимать под эфиром физическое пространство ОТО[49]. В отличие от светоносного эфира, физическое пространство не субстанционально (например, нельзя приписать точкам пространства собственное движение и самоидентичность), поэтому для пространства, в отличие от эфира Лоренца-Пуанкаре, не возникает трудностей с принципом относительности[50]. Однако большинство физиков предпочло не возвращаться к использованию уже упразднённого термина.
Попытки возврата в физику понятия эфира[ | код]
Часть учёных и после 1905 года продолжала поддерживать концепцию светоносного эфира, они выдвигали различные альтернативные теории и пытались доказать их экспериментально. Однако неизменно оказывалось, что теория относительности и теории, на ней основанные, находятся в согласии с результатами всех наблюдений и экспериментов,[51][52] в то время как конкурентоспособной эфирной теории, способной описать всю совокупность опытных фактов, не появилось.
В современных научных статьях термин «эфир» используется почти исключительно в работах по истории науки[53]. Тем не менее время от времени появляются предложения воскресить это понятие как полезное для физики.
Часть таких мнений носит скорее терминологический характер. Как уже говорилось выше, ещё Эйнштейн предложил называть эфиром физическое пространство, чтобы подчеркнуть, что оно имеет не только геометрические, но и физические атрибуты. Уиттекер позднее писал: «Мне кажется абсурдным сохранять название „вакуум“ для категории, обладающей таким количеством физических свойств, а вот исторический термин „эфир“ как нельзя лучше подходит для этой цели»[54]. Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:
Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу.[55]
Существенной поддержки эти предложения не получили[56][57][58]. Одной из причин этого является то, что эфир ассоциируется с механическими моделями, которые характеризуются скоростью среды в каждой точке (трёх- или четырёхмерным вектором), а известные физические поля не имеют подобных свойств, например, метрическое поле — тензорное, а не векторное, а калибровочные векторные поля Стандартной модели имеют дополнительные индексы.
Термин эфир изредка используется в научных работах при создании новой терминологии. Так, например, в работе A. de Gouvêa, Can a CPT violating ether solve all electron (anti)neutrino puzzles?, Phys. Rev. D 66, 076005 (2002) (hep-ph/0204077) под «CPT-нарушающим эфиром» подразумевается лишь определённого вида члены в потенциале нейтринного лагранжиана.
Более радикальные построения, в которых эфир выступает как субстанция (среда), вступают в конфликт с принципом относительности[51]. Такой эфир за счёт очень слабого взаимодействия с обычным миром может приводить к некоторым явлениям, главным из которых является слабое нарушение лоренц-инвариантности теории. Ссылки на некоторые из этих моделей можно найти в SLAC Spires Database.
Однако до настоящего времени не обнаружены какие-либо наблюдаемые физические явления, которые оправдали бы реанимацию концепции субстанционального эфира в какой-либо форме. В бюллетене «В защиту науки», издаваемом Комиссией по борьбе с лженаукой и фальсификацией научных исследований при Президиуме РАН, теория эфира охарактеризована как лженаука[59].
Использование термина «эфир» в культуре[ | код]
Радио появилось задолго до того, как термин эфир вышел из научного употребления, и в профессиональной терминологии медиа-индустрии укоренилось немало связанных с эфиром словосочетаний: программа вышла в эфир, прямой эфир и т. п. Термин «передача в эфир» использован в ряде статей ГК РФ, касающихся авторского права и смежных прав. Английская версия термина (Ether) присутствует во многих терминах электроники (например, «Ethernet»), хотя применительно к радиосвязи и радиовещанию используется слово air.
См. также[ | код]
Примечания[ | код]
- ↑ 1 2 Эфир // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1988. — Т. 5. — С. 688. — ISBN 5-85270-034-7.
- ↑ 1 2 Еремеева А. И., Цицин Ф. А. История астрономии. — М.: Изд-во МГУ, 1989. — С. 175.
- ↑ Уиттекер, 2001, с. 23.
- ↑ Рожанский И. Д. Анаксагор. — М.: Мысль, 1983. — С. 43. — 142 с. — (Мыслители прошлого).
- ↑ Терентьев И. В. История эфира, 1999, с. 19—26.
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 359—360..
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 195—198..
- ↑ René Descartes' philosophische Werke. Abteilung 3, Berlin 1870, S. 85-175, § 88.
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 48..
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 207—211, 228—237..
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 221—226..
- ↑ Декарт Рене. Первоначала философии. Часть IV, §§ 133—187.
- ↑ Декарт Рене. Рассуждение о методе. Диоптрика. Метеоры. Геометрия. — М.: Изд.: АН СССР, 1953. — С. 277.
- ↑ Гольдгаммер Д. А. Эфир, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Спасский Б. И. История физики. — Т. 1. — С. 122-124.
- ↑ Кудрявцев П. С. Курс истории физики. — Т. 1. — С. 221.
- ↑ Уиттекер, 2001, с. 31.
- ↑ Терентьев И. В. История эфира, 1999, с. 66.
- ↑ Вавилов С. И. Исаак Ньютон, глава VI. 2-е доп. изд. — М.-Л.: Изд. АН СССР, 1945. (Переиздание: — М.: Наука, 1989.)
- ↑ Исаак Ньютон. Математические начала натуральной философии. — М.: Наука, 1989. — С. 662. — 688 с. — (Классики науки). — ISBN 5-02-000747-1.
- ↑ Уиттекер, 2001, с. 38-39.
- ↑ Уиттекер, 2001, с. 126.
- ↑ Терентьев И. В. История эфира, 1999, с. 94—95.
- ↑ Уиттекер, 2001, с. 138.
- ↑ Спасский Б. И. История физики, 1977, Том I, стр. 262.
- ↑ Спасский Б. И. История физики, 1977, Том I, стр. 264—266.
- ↑ Уиттекер, 2001, с. 234.
- ↑ Спасский Б. И., Cараргов Ц. С. О роли механических моделей в работах Максвелла по теории электромагнитноrо поля // Вопросы истории физико-математических наук. — М.: Высшая школа, 1963. — С. 415—424.
- ↑ Спасский Б. И. История физики, 1977, Том II, стр. 97—103.
- ↑ 1 2 3 4 Летопись жизни и деятельности Д. И. Менделеева / Ответственный редактор А. В. Сторонкин. — Л.: Наука, 1984. С. 150, 178, 179.
- ↑ Рязанцев Г. Проблема «нулевых» в работах Менделеева // Наука и жизнь. — 2014. — № 2. — С. 76—80.
- ↑ Менделеев Д. И. Попытка химического понимания мирового эфира. — СПб.: Типолитография М. П. Фроловой. 1905. С. 5—40
- ↑ Керова Л. С. Некоторые особенности творчества Д. И. Менделеева // Эволюция идей Д. И. Менделеева в современной химии. — Л.: Наука. 1984. С. 8, 12
- ↑ Беленький М. Д. Глава шестая. Пасьянс // Менделеев. — М.: Молодая гвардия, 2010. — 512 с. — (Жизнь замечательных людей). — 5000 экз. — ISBN 978-5-235-03301-6.
- ↑ Роузвер Н. Т., 1985, с. 119..
- ↑ 1 2 3 4 5 Богородский А. Ф., 1971, с. 31—34.
- ↑ Визгин В. П., 1981, с. 30—31..
- ↑ 1 2 Роузвер Н. Т., 1985, с. 125—130..
- ↑ 1 2 Роузвер Н. Т., 1985, с. 130—133..
- ↑ G. L. Lesage. Lucrèce Newtonien (фр.) // Nouveaux Memoires De L’Academie Royal de Sciences et Belle Letters. — Berlin, 1782. — P. 404-431.
- ↑ 1 2 3 Роузвер Н. Т., 1985, с. 133—138..
- ↑ Джеймс Клерк Максвелл. Атом // Статьи и речи. — М.: Наука, 1968. — С. 157. — 423 с.
- ↑ Визгин В. П., 1981, с. 56—57..
- ↑ Albert A. Michelson, Edward W. Morley. On the Relative Motion of the Earth and the Luminiferous Ether. The American Journal of Science. III series. Vol. XXII, No. 128, P.120 — 129.
- ↑ См. Повторения опыта Майкельсона.
- ↑ Малыкин Г. Б. Эффект Саньяка. Корректные и некорректные объяснения. Успехи физических наук, том 170, № 12 (2000)
- ↑ Эфир возвращается?
- ↑ Эйнштейн А. Собрание научных трудов в четырёх томах. М.: Наука, 1965—1967. Том I, стр. 138.
- ↑ Эйнштейн А. Собрание научных трудов в четырёх томах. — М.: Наука, 1965—1967. Том I, стр. 682—689.
- ↑ Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. — 5-е изд., перераб. и доп. — М.: Наука, 1980. — С. 211-213, 531..
- ↑ 1 2 Уилл К. Теория и эксперимент в гравитационной физике = Will, Clifford M. Theory and Experiment in Gravitational Physics. Cambridge Univ. Press, 1981. / Пер. с англ.. — М.: Энергоатомиздат, 1985. — 296 с.
- ↑ Clifford M. Will. The Confrontation between General Relativity and Experiment Living Rev. Relativity 9, (2006), 3.
- ↑ Например, поиск этого термина в послевоенных выпусках журнала «Успехи физических наук» практически безрезультатен: Поиск в УФН по метаконтексту «эфир»
- ↑ Уиттекер, 2001, с. 16.
- ↑ Laughlin, Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY : Basic Books, 2005. — P. 120–121. — ISBN 978-0-465-03828-2.
- ↑ Kostro, L. Albert Einstein's New Ether and his General Relativity // Proceedings of the Conference of Applied Differential Geometry. — 2001. — С. 78–86. Архивировано 2 августа 2010 года.
- ↑ Stachel, J. Why Einstein reinvented the ether // Physics World. — 2001. — Вып. 55–56..
- ↑ Kostro, L. An outline of the history of Einstein's relativistic ether concept //In: Jean Eisenstaedt & Anne J. Kox, Studies in the history of general relativity, 3. — Boston-Basel-Berlin: Birkäuser, 1992. — P. 260–280. — ISBN 0-8176-3479-7.
- ↑ Сергеев, А. Г. Синекдоха отвечания, или Защита гомеопатическая // В защиту науки. — 2017. — № 19. — С. 90.
...существуют десятки настоящих лженаук, таких как астрология и хиромантия, экстрасенсорика и парапсихология, криптобиология и биоэнергетика, биорезонанс и иридодиагностика, креационизм и телегония, уфология и палеоастронавтика, эниология и дианетика, нумерология и соционика, физиогномика и графология, информациология и универсология, лозоходство и контактерство, дерматоглифическое тестирование и геопатогенные зоны, геополитика и лунный заговор, теории эфира и торсионных полей, памяти воды и волновой генетики
Литература[ | код]
- Богородский А. Ф. Всемирное тяготения. — Киев: Наукова думка, 1971. — 351 с.
- Визгин В. П. Релятивистская теория тяготения. Истоки и формирование. 1900-1915 гг.. — М.: Наука, 1981. — 352 с.
- Гольдгаммер Д. А. Эфир, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Декарт Рене. Первоначала философии // Сочинения в двух томах. — М.: Мысль, 1989. — Т. I.
- Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
- Роузвер Н. Т. Перигелий Меркурия. От Леверье до Эйнштейна = Mercury's perihelion. From Le Verrier to Einstein. — М.: Мир, 1985. — 244 с.
- Спасский Б. И. История физики. — М.: Высшая школа, 1977.
- Терентьев И. В. История эфира. — М.: ФАЗИС, 1999. — 176 с. — ISBN 5-7036-0054-5.
- Уиттекер Э. История теории эфира и электричества. Том 1. — М.: Регулярная и хаотическая динамика, 2001. — 512 с. — ISBN 5-93972-070-6.
- Уиттекер Э. История теории эфира и электричества. Том 2. — М.: Институт компьютерных исследований, 2004. — 464 с. — ISBN 5-93972-304-7.
ru.wikibedia.ru
Светоносный эфир Википедия
Эфир (светоносный эфир, от др.-греч. αἰθήρ, верхний слой воздуха; лат. aether) — гипотетическая всепроникающая среда[1], колебания которой проявляют себя как электромагнитные волны (в том числе как видимый свет). Концепция светоносного эфира была выдвинута в XVII веке Рене Декартом[2] и получила подробное обоснование в XIX веке в рамках волновой оптики и электромагнитной теории Максвелла. Эфир рассматривался также как материальный аналог ньютоновского абсолютного пространства. Существовали и другие варианты теории эфира.
В конце XIX века в теории эфира возникли непреодолимые трудности, вынудившие физиков отказаться от понятия эфира и признать электромагнитное поле самодостаточным физическим объектом, не нуждающимся в дополнительном носителе. Абсолютное пространство было упразднено специальной теорией относительности. Неоднократные попытки отдельных учёных возродить концепцию эфира в той или иной форме (например, связать эфир с физическим вакуумом) успеха не имели[1].
История
Античные представления
Из немногочисленных дошедших до нас трудов древнегреческих учёных можно понять, что эфир тогда понимался как особое небесное вещество, «заполнитель пустоты» в Космосе[3]. Платон в диалоге «Тимей» сообщает, что Бог создал мир из эфира. Лукреций Кар в поэме «О природе вещей» упоминает, что «эфир питает созвездия», то есть светила состоят из сгущённого эфира. Иначе представлял эфир Анаксагор — по его мнению, эфир похож на земной воздух, только более горячий, сухой и разрежённый[4].
Демокрит и другие атомисты термин эфир не использовали, их система мира включала лишь атомы и пустоту[5].
Несколько более подробная картина изложена в трудах Аристотеля. Он также считал, что планеты и другие небесные тела состоят из эфира (или квинтэссенции), который есть «пятый элемент» природы, причём, в отличие от остальных (огня, воды, воздуха и земли), вечный и неизменный. Аристотель писал: «Солнце не состоит из огня; оно есть огромное скопление эфира; теплота Солнца причиняется действием его на эфир во время обращения вокруг Земли». Эфир также заполняет весь внеземной Космос, начиная со сферы Луны; из приведенной цитаты можно сделать вывод, что эфир Аристотеля передаёт свет от Солнца и звёзд, а также тепло от Солнца. Аристотелевское понимание термина переняли средневековые схоласты; оно продержалось в науке до XVII века.
Эфир Декарта (XVII век)
Подробно разработанная гипотеза о существовании физического эфира была выдвинута в 1618 году Рене Декартом и впервые изложена в труде «Мир, или трактат о свете» (1634), а позже развита и опубликована в «Первоначалах философии» (1644)[2].
Декарт впервые чётко утверждал наличие у мирового эфира обычных механических свойств вещества и возродил в новой физике, таким образом, понятие эфира в духе Анаксагора (вместо дискредитированного к этому времени аристотелева эфира как «небесного» элемента). Понятие мирового эфира в интерпретации Декарта удерживалось вплоть до начала XX века.
В соответствии со своей (картезианской) натурфилософией Декарт рассматривал всю Вселенную как неопределённо протяжённую материю, принимающую различные формы под действием присущего ей движения[6].
Декарт отрицал пустоту и считал, что всё пространство заполнено первоматерией или её производными. Первоматерию он представлял как абсолютно плотное тело, каждая из частей которого занимает часть пространства, пропорциональное её величине и не способна к растяжению или сжатию, а также не может занимать одно и то же место с другой частью материи. Эта материя способна к делению на части любой формы под действием приложенной силы, и каждая из её частей может обладать любым допустимым движением[7]. Частицы материи сохраняют свою форму, покуда у них имеется приобретённое движение. При потере движения частицы способны к объединению[8]. Он предполагал, что под действием приложенной силы частицы первоматерии стачивали свои углы в различных кругообразных движениях. Образовавшиеся сферы формировали вихри, а осколки заполняли промежутки между ними.
Эфирные вихри в представлении Декарта («Принципы философии», том III)Невидимый эфир Декарта заполнял всё свободное от материи пространство Вселенной, однако не оказывал сопротивления при движении в нём вещественных тел. Декарт разделил «эфирные материи» по их свойствам на три категории[9].
- Элемент огня — самая тонкая и самая проникающая жидкость, сформированная в процессе стачивания частиц материи. Частицы огня самые маленькие и обладают самой большой скоростью. Они разнообразно делятся при столкновении с другими телами и заполняют все промежутки между ними. Из них состоят звёзды и Солнце.
- Элемент воздуха — сферы, которые формируют тончайшую жидкость по сравнению с видимой материей, но в отличие от элемента огня обладают известной величиной и фигурой благодаря наличию осевого вращения. Это вращение позволяет сохранять форму частицы даже в состоянии покоя относительно окружающих тел. Из этих частиц состоит космос, не занятый звёздами или планетами, и они образуют собственно светоносный эфир.
- Элемент земли — крупные частицы первоматерии, движения в которых очень мало или оно полностью отсутствует. Из этих частиц состоят планеты.
Механические свойства эфира, а именно абсолютная твёрдость частиц второго элемента и их плотное прилегание друг к другу, способствуют мгновенному распространению изменений в них. Когда импульсы изменений достигают Земли, они воспринимаются нами в качестве тепла и света[10].
Изложенную систему мира Декарт применил для объяснения не только световых, но и других явлений. Причину тяжести (которую он считал присущей только земным предметам) Декарт видел в давлении окружающих Землю эфирных частиц, которые движутся быстрее самой Земли[11]. Магнетизм вызван циркуляцией вокруг магнита двух встречных потоков мельчайших винтообразных частиц с противоположной резьбой, поэтому два магнита могут не только притягиваться, но и отталкиваться. За электростатические явления аналогично ответственны частицы лентообразной формы[12]. Декарт построил также оригинальную теорию цвета, по которой разные цвета получаются из-за разных скоростей вращения частиц второго элемента[13][14].
Теории света после Декарта
Учение Декарта о свете было существенно развито Гюйгенсом в его «Трактате о свете» (Traité de la lumière, 1690). Гюйгенс рассматривал свет как волны в эфире и разработал математические основы волновой оптики.
В конце XVII века были открыты несколько необычных оптических явлений, которые следовало согласовать с моделью светоносного эфира: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин, изучено Гюйгенсом), оценка скорости света (1675, Рёмер)[15]. Наметились два варианта физической модели света:
- Эмиссионная (или корпускулярная) теория: свет есть поток частиц, излучаемых источником. В пользу этого мнения говорила прямолинейность распространения света, на которой основана геометрическая оптика, однако дифракция и интерференция плохо укладывались в эту теорию.
- Волновая: свет есть всплеск в эфире. Надо принять во внимание, что под волной тогда понимали не бесконечное периодическое колебание, как в современной теории, а одиночный импульс[16]; по этой причине объяснения световых явлений с волновых позиций были мало правдоподобны.
Интересно отметить, что концепция светоносного эфира Декарта—Гюйгенса стала вскоре общепринятой в науке и не пострадала от развернувшихся в XVII—XVIII веках споров картезианцев и атомистов[17][18], а также сторонников эмиссионной и волновой теории. Даже Исаак Ньютон, склонявшийся скорее к эмиссионной теории, допускал, что в указанных эффектах принимает участие и эфир[19]. В трудах Ньютона эфир упоминается очень редко (в основном в ранних работах), хотя в личных письмах он иногда позволял себе «измышлять гипотезы» о возможной роли эфира в оптических, электрических и гравитационных явлениях. В последнем абзаце своего основного труда «Математические начала натуральной философии» Ньютон пишет: «Теперь следовало бы кое-что добавить о некоем тончайшем эфире, проникающем все сплошные тела и в них содержащемся». Далее он перечисляет предполагавшиеся в тот период примеры физической роли эфира:
Частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на большие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира от внешних органов чувств мозгу и от мозга мускулам.
Ньютон, однако, никак не комментирует все эти гипотезы, ограничившись замечанием: «Но это не может быть изложено вкратце, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны»[20].
Благодаря авторитету Ньютона, эмиссионная теория света в XVIII веке стала общепринятой. Эфир рассматривался не как носитель, но как переносчик световых частиц, а преломление и дифракцию света объясняли изменением плотности эфира — вблизи тел (дифракция) или при переходе света из одной среды в другую (преломление)[21]. В целом эфир как часть системы мира отошёл в XVIII веке на задний план, однако теория эфирных вихрей сохранилась, и были безуспешные попытки применить её для объяснения магнетизма и гравитации[22].
Развитие моделей эфира в XIX веке
Волновая теория света
В начале XIX века волновая теория света, рассматривавшая свет как волны в эфире, одержала решительную победу над эмиссионной теорией. Первый удар по эмиссионной теории нанёс английский учёный-универсал Томас Юнг, в 1800 году разработавший волновую теорию интерференции (и ввёл сам этот термин) на основе сформулированного им принципа суперпозиции волн. По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах.
Огюстен Жан ФренельВначале теория Юнга была встречена враждебно. Как раз в это время было глубоко изучено явление двойного лучепреломления и поляризации света, воспринятое как решающее доказательство в пользу эмиссионной теории. Но тут в поддержку волновой модели (ничего не зная о Юнге) выступил Огюстен Жан Френель. Рядом остроумных опытов он продемонстрировал чисто волновые эффекты, совершенно необъяснимые с позиций корпускулярной теории, а его мемуар, содержащий всестороннее исследование с волновых позиций и математическую модель всех известных тогда свойств света (кроме поляризации), победил на конкурсе Парижской Академии наук (1818). Курьёзный случай описывает Араго: на заседании комиссии академиков Пуассон выступил против теории Френеля, так как из неё следовало, что при определённых условиях в центре тени от непрозрачного кружка мог появиться ярко освещённый участок. На следующем заседании Френель продемонстрировал членам комиссии этот эффект.
Юнг и Френель изначально рассматривали свет как упругие (продольные) колебания разрежённого, но чрезвычайно упругого эфира, подобные звуку в воздухе. Любой источник света запускает упругие колебания эфира, которые происходят с гигантской, нигде больше не отмеченной в природе частотой, благодаря чему достигается распространение их с колоссальной скоростью[23]. Любое вещественное тело притягивает эфир, который проникает внутрь тела и сгущается там. От плотности эфира в прозрачном теле зависел коэффициент преломления света[24].
Оставалось понять механизм поляризации. Ещё в 1816 году Френель обсуждал возможность того, что световые колебания эфира не продольны, а поперечны. Это легко объяснило бы явление поляризации. Юнг в это время тоже пришёл к такой идее. Однако поперечные колебания ранее встречались только в несжимаемых твёрдых телах, в то время как эфир считали близким по свойствам к газу или жидкости. В 1822—1826 годах Френель представил мемуары с описанием новых опытов и полную теорию поляризации, сохраняющую значение и в наши дни.
Модель Коши-Стокса
Интерес и доверие к концепции эфира в XIX веке резко возросли. Следующие (после 1820-х) почти сто лет обозначены триумфальным успехом волновой оптики во всех областях. Классическая волновая оптика была завершена, поставив в то же время труднейший вопрос: что же представляет собой эфир?
Когда выяснилось, что световые колебания строго поперечны, встал вопрос о том, какими свойствами должен обладать эфир, чтобы допускать поперечные колебания и исключить продольные. А. Навье в 1821 году получил общие уравнения распространения возмущений в упругой среде. Теория Навье была развита О. Л. Коши (1828), который показал, что, вообще говоря, продольные волны также должны существовать[25].
Френель выдвинул гипотезу, согласно которой эфир несжимаем, но допускает поперечные сдвиги. Такое предположение трудно согласовать с полной проницаемостью эфира по отношению к веществу. Д. Г. Стокс объяснил затруднение тем, что эфир подобен смоле: при быстрых деформациях (излучение света) он ведёт себя как твёрдое тело, а при медленных (скажем, при движении планет) пластичен. В 1839 году Коши усовершенствовал свою модель, создав теорию сжимающегося (лабильного) эфира, позднее доработанную У. Томсоном.
Чтобы все эти модели не рассматривались как чисто спекулятивные, из них следовало формально вывести основные эффекты волновой оптики. Однако подобные попытки имели мало успеха. Френель предположил, что эфир состоит из частиц, величина которых сравнима с длиной световой волны. При этом дополнительном предположении Коши удалось обосновать явление дисперсии света. Однако попытки связать, например, френелевскую теорию преломления света с какой-либо моделью эфира оказались неудачны[26].
Эфир и электромагнетизм
Фарадей относился к эфиру скептически и выражал неуверенность в его существовании[27]. С открытием Максвеллом уравнений классической электродинамики теория эфира получила новое содержание.
В ранних работах Максвелл использовал гидродинамические и механические модели эфира, однако подчёркивал, что они служат только для пояснения с помощью наглядной аналогии. Необходимо иметь в виду, что векторного анализа тогда ещё не существовало, и гидродинамическая аналогия понадобилась Максвеллу, в первую очередь, для разъяснения физического смысла дифференциальных операторов (дивергенция, ротор и др.). Например, в статье «О Фарадеевых силовых линиях» (1855) Максвелл пояснил, что используемая в модели воображаемая жидкость «представляет собой исключительно совокупность фиктивных свойств, составленную с целью представить некоторые теоремы чистой математики в форме, более наглядной и с большей лёгкостью применимой к физическим задачам, чем форма, использующая чисто алгебраические символы»[28]. Позднее (с 1864 года) Максвелл исключил из своих трудов рассуждения по аналогии[29]. Конкретных моделей эфира Максвелл не разрабатывал и не опирался на какие-либо свойства эфира, кроме способности поддерживать ток смещения, то есть перемещение электромагнитных колебаний в пространстве.
Когда эксперименты Г. Герца подтвердили теорию Максвелла, эфир стал рассматриваться как общий носитель света, электричества и магнетизма. Волновая оптика превратилась в органичную часть теории Максвелла, и возникла надежда построить физическую модель эфира на этом фундаменте. Исследованиями в этой области занимались крупнейшие учёные мира. Часть из них (например, сам Максвелл, Умов и Гельмгольц), хотя писала о свойствах эфира, фактически изучала свойства электромагнитного поля. Другая часть (например, Д. Г. Стокс, У. Томсон) пыталась раскрыть природу и свойства собственно эфира — оценить давление в нём, плотность его массы и энергии, связать с атомной теорией.
Химизм в попытках понимания эфира (Д. И. Менделеев)
Д. И. Менделеев. Опыт химического понимания мирового эфира. Нью-Йорк — Лондон — Бомбей. 1904В трудах Д. И. Менделеева этот вопрос имеет непосредственное отношение к осмыслению им физических причин периодичности. Поскольку свойства элементов пребывают в периодической зависимости от атомных весов (массы), учёный предполагал использовать эти закономерности для решения настоящей проблемы, — определяя причины сил тяготения и благодаря изучению свойств передающей их среды.[30]
Как уже отмечено, предполагалось, что «эфир», заполняющий межпланетное пространство, является средой, передающей свет, тепло и гравитацию. В контексте таких представлений исследования сильно разреженных газов представлялось возможным путём к детерминации названной субстанции, когда свойства «обычного» вещества уже не способны бы были скрывать свойства «эфира»[30].
В одной из своих гипотез Д. И. Менделеев руководствовался тем, что специфическим состоянием сильно разреженных газов воздуха мог оказаться «эфир» или некий неизвестный инертный газ с очень малым весом, то есть наилегчайший химический элемент. Учёный пишет на оттиске из «Основ химии», на эскизе периодической системы 1871 года: «Легче всех эфир, в миллионы раз»; в рабочей тетради 1874 года он более ясно высказывает свои соображения: «При нулевом давлении у воздуха есть некоторая плотность, это и есть эфир!». Но в его публикациях той поры эти мысли не нашли отражения. Открытие в конце XIX века инертных газов актуализировало вопрос о химической сущности мирового эфира. По предложению Уильяма Рамзая Менделеев включает в периодическую таблицу нулевую группу, оставляя место для более лёгких, чем водород, элементов. По мнению Менделеева, группа инертных газов могла быть дополнена коронием и легчайшим, пока неизвестным элементом, названным им ньютонием, который и составляет мировой эфир[31]
Свои взгляды в апреле 1902 года он развёрнуто излагает в эссе «Попытка химического понимания мирового эфира» (опубликовано на английском языке в 1904 году, на русском — в 1905 году). В заключительной части этого труда Д. И. Менделеев пишет[30][32]:
Представляя эфир газом, обладающим указанными признаками и относящимся к нулевой группе, я стремлюсь прежде всего извлечь из периодического закона то, что он может дать, реально объяснить вещественность и всеобщее распространение эфирного вещества повсюду в природе и его способность проникать все вещества не только газо- или парообразные, но и твёрдые и жидкие, так как атомы наиболее легких элементов, из которых состоят наши обычные вещества, всё же в миллионы раз тяжелее эфирных и, как надо думать, не изменят сильно своих отношений от присутствия столь лёгких атомов, каковы атомы или эфирные. Понятно само собой, что вопросов является затем и у меня самого целое множество, что на большую часть из них мне кажется невозможным отвечать, и что в изложении своей попытки я не думал ни поднимать их, ни пытаться отвечать на те из них, которые мне кажутся разрешимыми. Писал не для этого свою «попытку», а только для того, чтобы высказаться в таком вопросе, о котором многие, знаю, думают, и о котором надо же начать говорить.
Ещё в ранних своих работах Д. И. Менделеев пришёл к методологическим принципам и положениям, получившим развитие в его последующих исследованиях. Он стремится подходить к решению того или иного вопроса, следуя этим общим принципам, создавая философскую концепцию, в пределах которой будет проводиться анализ конкретных данных. Это характерно и для исследований, касающихся данной темы, которые выразились результатами, к ней прямого отношения не имеющими.[33] Движимый идеей обнаружения эфира, Д. И. Менделеев экспериментально начал изучать разреженные газы, и, занимаясь этой темой, сформулировал или подтвердил положения кинетической теории и термодинамики, теоретически обосновал условия поведения сжатых газов[34]: получил уравнение идеального газа, содержащее выведенную им универсальную газовую постоянную, и получил вириальные разложения, которые находятся в полном соответствии с первыми приближениями в известных сейчас уравнениях для реальных газов. Очень ценным, но несколько преждевременным, было предложение Д. И. Менделеева о введении термодинамической шкалы температур[30].
Эфир и гравитация
В течение XVII—XIX веков были сделаны многочисленные попытки связать эфир с гравитацией и подвести физическую основу под ньютоновский закон всемирного тяготения. Исторические обзоры упоминают более 20 таких моделей разной степени разработанности. Чаще других высказывались следующие идеи[35][36][37].
- Гидростатическая модель: поскольку эфир, как считалось, скапливается внутри материальных тел, его давление в пространстве между телами ниже, чем в удалении от этих тел. Избыточное давление сбоку «подталкивает» тела друг к другу.
- Тяготение есть результат распространения через эфир колебаний («пульсаций») атомов вещества.
- В эфире имеются «источники» и «стоки», и их взаимовлияние проявляется как тяготение.
- Эфир содержит множество беспорядочно движущихся микрочастиц (корпускул), и тяготение двух тел возникает из-за того, что каждое тело «экранирует» другое от этих частиц, тем самым создавая дисбаланс сил (подталкивающих корпускул получается больше, чем расталкивающих).
Все эти модели подверглись аргументированной критике и не смогли добиться широкого научного признания[36].
Гидростатическая модель
Впервые эта модель была опубликована в списке проблем и вопросов, которые Ньютон поместил в конце своего труда «Оптика» (1704). Сам Ньютон ни разу не выступил в поддержку такого подхода, ограничившись известным высказыванием: «Причину этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю». Данная идея никогда не получала сколько-нибудь серьёзного развития[36].
Другой вариант этой модели предложил Роберт Гук: притяжение вызывают колебания атомов, передающиеся от тела к телу через эфир. Эта мысль получила развитие в XIX веке в виде «пульсационных» теорий[36].
«Пульсационные» теории
Среди «пульсационных» теорий наиболее видное место занимает модель норвежского физика Карла Бьеркнеса, который одним из первых попытался создать единую теорию всех полей. Публикации Бьеркнеса (1870-е годы) развивали следующую идею: тела в эфире ведут себя подобно синхронно пульсирующим телам в несжимаемой жидкости, между которыми, как известно, возникает притяжение, обратно пропорциональное квадрату расстояния. Концепцию Бьеркнеса поддержали английские физики Фредерик Гатри (Frederick Guthrie) и Уильям Хикс (William Mitchinson Hicks), последний теоретически описал «отрицательную материю», чьи атомы колеблются в противофазе, и антигравитацию. В 1909 году теория Бьеркнеса была развита Чарльзом Бертоном (Charles V. Burton), который приписал пульсации электронам внутри тел[38].
«Пульсационные» модели подверглись резкой критике, против них были выдвинуты следующие возражения[38].
- Общепринятая в конце XIX века теория эфира рассматривала его как упругую среду, поэтому свойство несжимаемости следовало либо как-то обосновать, либо допустить существование двух в корне различных видов эфира.
- Непонятны причины синхронности колебаний атомов.
- Для поддержания незатухающих пульсаций необходимы какие-то внешние силы.
Источники/стоки в эфире
Основными авторами этой группы моделей были английские учёные Карл Пирсон (K. Pearson) и Джордж Адольф Шотт (George Adolphus Schott). Пирсон, специалист по гидродинамике, сначала поддерживал пульсационные теории, но в 1891 году предложил модель атома как системы эфирных струй, с помощью которой надеялся объяснить как электромагнитные, так и гравитационные эффекты[39]:
Первичной субстанцией является жидкая невращающаяся среда, а атомы или элементы материи суть струи этой субстанции. Откуда взялись в трёхмерном пространстве эти струи, сказать нельзя; в возможности познания физической Вселенной теория ограничивается их существованием. Может быть, их возникновение связано с пространством более высокой размерности, чем наше собственное, но мы о нём ничего знать не можем, мы имеем дело лишь с потоками в нашу среду, со струями эфира, которые мы предложили именовать «материей».
Масса, по Пирсону, определяется средней скоростью струй эфира. Из этих общих соображений Пирсон сумел вывести ньютоновский закон тяготения. Пирсон не объяснил, откуда и куда текут эфирные струи. Этот аспект попытался прояснить Шотт, предположив, что радиус электрона со временем увеличивается, и это «раздувание» являются источником движения эфира. В варианте Шотта постоянная тяготения меняется со временем[39].
Теория Лесажа
Притяжение по Лесажу: каждое тело «экранирует» другое от давления корпускул, создавая равнодействующую в сторону сближенияИдея этой остроумной механической модели тяготения появилась ещё во времена Ньютона (Никола Фатио де Дюилье, 1690), автором развитой теории стал швейцарский физик Жорж Луи Лесаж, первая публикация которого появилась в 1782 году[40]. Суть идеи показана на рисунке: пространство заполнено некими быстро и хаотично движущимися эфирными корпускулами, их давление на одиночное тело уравновешено, в то время как давление на два близких тела несбалансировано (в силу частичного экранирования со стороны тел), что создаёт эффект взаимного притяжения. Увеличение массы тела означает увеличение числа составляющих это тело атомов, из-за чего пропорционально увеличивается число столкновений с корпускулами и величина давления с их стороны, поэтому сила притяжения пропорциональна массе тела. Отсюда Лесаж вывел закон тяготения Ньютона[41].
Критики теории Лесажа отмечали множество её слабых мест, особенно с точки зрения термодинамики. Джеймс Максвелл показал, что в модели Лесажа энергия непременно перейдёт в теплоту и быстро расплавит любое тело. В итоге Максвелл сделал вывод[42]:
Мы посвятили этой теории больше места, нежели, по-видимому, она заслуживает, потому что она остроумна и потому что это — единственная теория о причине тяготения, которая была настолько подробно развита, что было возможно обсуждать аргументы за и против неё. Видимо, она не может объяснить нам, почему температура тел остается умеренной, между тем как их атомы выдерживают подобную бомбардировку.
Анри Пуанкаре подсчитал (1908), что скорость корпускул должна быть на много порядков выше скорости света, и их энергия испепелила бы все планеты[41]. Были отмечены и непреодолимые логические трудности[36]:
- Если тяготение вызвано экранированием, то Луна в те моменты, когда она находится между Землёй и Солнцем, должна существенно влиять на силу притяжения этих тел и, соответственно, на траекторию Земли, однако ничего подобного в реальности не наблюдается.
- Быстро движущееся тело должно испытывать спереди избыточное давление со стороны корпускул.
Попытка Джорджа Дарвина заменить корпускулы на волны в эфире оказалась также неудачной[43]. В обзоре 1910 года модель Лесажа уверенно характеризуется как несостоятельная[41].
Трудности в теории эфира (конец XIX — начало XX века)
В 1728 году английский астроном Брэдли открыл аберрацию света: все звёзды описывают на небосводе малые круги с периодом в один год. С точки зрения эфирной теории света это означало, что эфир неподвижен, и его кажущееся смещение (при движении Земли вокруг Солнца) по принципу суперпозиции отклоняет изображения звёзд. Френель, однако, допускал, что внутри движущегося вещества эфир частично увлекается. Эта точка зрения, казалось, нашла подтверждение в опытах Физо.
Максвелл в 1868 году предложил схему решающего опыта, который после изобретения интерферометра смог осуществить в 1881 году американский физик Майкельсон. Позже Майкельсон и Эдвард Морли повторили опыт несколько раз с возрастающей точностью, но результат был неизменно отрицательным — «эфирного ветра» не существовало.
В 1892 году Г. Лоренц и независимо от него Дж. Фицджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения, из-за чего «эфирный ветер» становится сложнее обнаружить. Оставался, однако, неясным вопрос — отчего длина сокращается в точности в такой степени, чтобы сделать обнаружение эфира (точнее, движения относительно эфира) невозможным. В это же время были открыты преобразования Лоренца, которые вначале посчитали специфическими для электродинамики. Эти преобразования объясняли лоренцево сокращение длины, но были несовместимы с классической механикой, основанной на преобразованиях Галилея. Анри Пуанкаре показал, что преобразования Лоренца эквивалентны принципу относительности для электромагнитного поля; он считал, что эфир существует, но принципиально не может быть обнаружен.
А. Эйнштейн, 1905 г.Физическая сущность преобразований Лоренца раскрылась после работ Эйнштейна. В статье 1905 года Эйнштейн рассмотрел два постулата: всеобщий принцип относительности и постоянство скорости света. Из этих постулатов сразу вытекали преобразования Лоренца (уже не только для электродинамики), сокращение длины и относительность одновременности событий. Эйнштейн указал в этой же статье на ненужность эфира, поскольку никаких разумных физических атрибутов приписать ему не удалось, а всё то, что считалось динамическими свойствами эфира, вобрала в себя кинематика специальной теории относительности (СТО). С этого момента электромагнитное поле стало рассматриваться не как энергетический процесс в эфире, а как самостоятельный физический объект.
Новые представления победили не сразу, ряд физиков ещё несколько десятилетий после 1905 года делали попытки восстановить доверие к эфирной модели. Дейтон Миллер в 1924 году объявил, что обнаружил «эфирный ветер». Результат Миллера не подтвердился, а намного более точные измерения (различными методами) вновь показали, что «эфирный ветер» отсутствует[45]. Другие физики пытались использовать для доказательства существования эфира эффект Саньяка, однако это явление полностью объясняется в рамках теории относительности[46]. Исследуются также возможные границы применимости теории относительности[47].
Причины отказа от концепции эфира
Главной причиной, по которой физическое понятие эфира было отвергнуто, стал тот факт, что это понятие после разработки СТО оказалось излишним. Из других причин можно назвать противоречивые атрибуты, приписываемые эфиру — неощутимость для вещества, поперечная упругость, немыслимая по сравнению с газами или жидкостями скорость распространения колебаний и др. Дополнительным аргументом стало доказательство дискретной (квантовой) природы электромагнитного поля, несовместимое с гипотезой непрерывного эфира.
В своей статье «Принцип относительности и его следствия в современной физике» (1910) А. Эйнштейн детально объяснил, почему концепция светоносного эфира несовместима с принципом относительности. Рассмотрим, например, магнит, движущийся поперёк замкнутого проводника. Наблюдаемая картина зависит только от относительного движения магнита и проводника и включает появление в последнем электрического тока. Однако с точки зрения теории эфира в разных системах отсчёта картина существенно разная. В системе отсчёта, связанной с проводником, при перемещении магнита меняется напряжённость магнитного поля в эфире, вследствие чего создаётся электрическое поле с замкнутыми силовыми линиями, в свою очередь создающее ток в проводнике. В системе отсчёта, связанной с магнитом, электрическое поле не возникает, а ток создаётся прямым действием изменения магнитного поля на электроны движущегося проводника. Таким образом, реальность процессов в эфире зависит от точки наблюдения, что в физике недопустимо[48].
Позже, после создания общей теории относительности (ОТО), Эйнштейн предложил возобновить применение термина, изменив его смысл, а именно — понимать под эфиром физическое пространство ОТО[49]. В отличие от светоносного эфира, физическое пространство не субстанционально (например, нельзя приписать точкам пространства собственное движение и самоидентичность), поэтому для пространства, в отличие от эфира Лоренца-Пуанкаре, не возникает трудностей с принципом относительности[50]. Однако большинство физиков предпочло не возвращаться к использованию уже упразднённого термина.
Попытки возврата в физику понятия эфира
Часть учёных и после 1905 года продолжала поддерживать концепцию светоносного эфира, они выдвигали различные альтернативные теории и пытались доказать их экспериментально. Однако неизменно оказывалось, что теория относительности и теории, на ней основанные, находятся в согласии с результатами всех наблюдений и экспериментов,[51][52] в то время как конкурентоспособной эфирной теории, способной описать всю совокупность опытных фактов, не появилось.
В современных научных статьях термин «эфир» используется почти исключительно в работах по истории науки[53]. Тем не менее время от времени появляются предложения воскресить это понятие как полезное для физики.
Часть таких мнений носит скорее терминологический характер. Как уже говорилось выше, ещё Эйнштейн предложил называть эфиром физическое пространство, чтобы подчеркнуть, что оно имеет не только геометрические, но и физические атрибуты. Уиттекер позднее писал: «Мне кажется абсурдным сохранять название „вакуум“ для категории, обладающей таким количеством физических свойств, а вот исторический термин „эфир“ как нельзя лучше подходит для этой цели»[54]. Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:
Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу.[55]
Существенной поддержки эти предложения не получили[56][57][58]. Одной из причин этого является то, что эфир ассоциируется с механическими моделями, которые характеризуются скоростью среды в каждой точке (трёх- или четырёхмерным вектором), а известные физические поля не имеют подобных свойств, например, метрическое поле — тензорное, а не векторное, а калибровочные векторные поля Стандартной модели имеют дополнительные индексы.
Термин эфир изредка используется в научных работах при создании новой терминологии. Так, например, в работе A. de Gouvêa, Can a CPT violating ether solve all electron (anti)neutrino puzzles?, Phys. Rev. D 66, 076005 (2002) (hep-ph/0204077) под «CPT-нарушающим эфиром» подразумевается лишь определённого вида члены в потенциале нейтринного лагранжиана.
Более радикальные построения, в которых эфир выступает как субстанция (среда), вступают в конфликт с принципом относительности[51]. Такой эфир за счёт очень слабого взаимодействия с обычным миром может приводить к некоторым явлениям, главным из которых является слабое нарушение лоренц-инвариантности теории. Ссылки на некоторые из этих моделей можно найти в SLAC Spires Database.
Однако до настоящего времени не обнаружены какие-либо наблюдаемые физические явления, которые оправдали бы реанимацию концепции субстанционального эфира в какой-либо форме. В бюллетене «В защиту науки», издаваемом Комиссией по борьбе с лженаукой и фальсификацией научных исследований при Президиуме РАН, теория эфира охарактеризована как лженаука[59].
Использование термина «эфир» в культуре
Радио появилось задолго до того, как термин эфир вышел из научного употребления, и в профессиональной терминологии медиа-индустрии укоренилось немало связанных с эфиром словосочетаний: программа вышла в эфир, прямой эфир и т. п. Термин «передача в эфир» использован в ряде статей ГК РФ, касающихся авторского права и смежных прав. Английская версия термина (Ether) присутствует во многих терминах электроники (например, «Ethernet»), хотя применительно к радиосвязи и радиовещанию используется слово air.
См. также
Примечания
- ↑ 1 2 Эфир // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1988. — Т. 5. — С. 688. — ISBN 5-85270-034-7.
- ↑ 1 2 Еремеева А. И., Цицин Ф. А. История астрономии. — М.: Изд-во МГУ, 1989. — С. 175.
- ↑ Уиттекер, 2001, с. 23.
- ↑ Рожанский И. Д. Анаксагор. — М.: Мысль, 1983. — С. 43. — 142 с. — (Мыслители прошлого).
- ↑ Терентьев И. В. История эфира, 1999, с. 19—26.
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 359—360..
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 195—198..
- ↑ René Descartes' philosophische Werke. Abteilung 3, Berlin 1870, S. 85-175, § 88.
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 48..
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 207—211, 228—237..
- ↑ Декарт. Первоначала философии, 1989, Том 1, стр. 221—226..
- ↑ Декарт Рене. Первоначала философии. Часть IV, §§ 133—187.
- ↑ Декарт Рене. Рассуждение о методе. Диоптрика. Метеоры. Геометрия. — М.: Изд.: АН СССР, 1953. — С. 277.
- ↑ Гольдгаммер Д. А. Эфир, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Спасский Б. И. История физики. — Т. 1. — С. 122-124.
- ↑ Кудрявцев П. С. Курс истории физики. — Т. 1. — С. 221.
- ↑ Уиттекер, 2001, с. 31.
- ↑ Терентьев И. В. История эфира, 1999, с. 66.
- ↑ Вавилов С. И. Исаак Ньютон, глава VI. 2-е доп. изд. — М.-Л.: Изд. АН СССР, 1945. (Переиздание: — М.: Наука, 1989.)
- ↑ Исаак Ньютон. Математические начала натуральной философии. — М.: Наука, 1989. — С. 662. — 688 с. — (Классики науки). — ISBN 5-02-000747-1.
- ↑ Уиттекер, 2001, с. 38-39.
- ↑ Уиттекер, 2001, с. 126.
- ↑ Терентьев И. В. История эфира, 1999, с. 94—95.
- ↑ Уиттекер, 2001, с. 138.
- ↑ Спасский Б. И. История физики, 1977, Том I, стр. 262.
- ↑ Спасский Б. И. История физики, 1977, Том I, стр. 264—266.
- ↑ Уиттекер, 2001, с. 234.
- ↑ Спасский Б. И., Cараргов Ц. С. О роли механических моделей в работах Максвелла по теории электромагнитноrо поля // Вопросы истории физико-математических наук. — М.: Высшая школа, 1963. — С. 415—424.
- ↑ Спасский Б. И. История физики, 1977, Том II, стр. 97—103.
- ↑ 1 2 3 4 Летопись жизни и деятельности Д. И. Менделеева / Ответственный редактор А. В. Сторонкин. — Л.: Наука, 1984. С. 150, 178, 179.
- ↑ Рязанцев Г. Проблема «нулевых» в работах Менделеева // Наука и жизнь. — 2014. — № 2. — С. 76—80.
- ↑ Менделеев Д. И. Попытка химического понимания мирового эфира. — СПб.: Типолитография М. П. Фроловой. 1905. С. 5—40
- ↑ Керова Л. С. Некоторые особенности творчества Д. И. Менделеева // Эволюция идей Д. И. Менделеева в современной химии. — Л.: Наука. 1984. С. 8, 12
- ↑ Беленький М. Д. Глава шестая. Пасьянс // Менделеев. — М.: Молодая гвардия, 2010. — 512 с. — (Жизнь замечательных людей). — 5000 экз. — ISBN 978-5-235-03301-6.
- ↑ Роузвер Н. Т., 1985, с. 119..
- ↑ 1 2 3 4 5 Богородский А. Ф., 1971, с. 31—34.
- ↑ Визгин В. П., 1981, с. 30—31..
- ↑ 1 2 Роузвер Н. Т., 1985, с. 125—130..
- ↑ 1 2 Роузвер Н. Т., 1985, с. 130—133..
- ↑ G. L. Lesage. Lucrèce Newtonien (фр.) // Nouveaux Memoires De L’Academie Royal de Sciences et Belle Letters. — Berlin, 1782. — P. 404-431.
- ↑ 1 2 3 Роузвер Н. Т., 1985, с. 133—138..
- ↑ Джеймс Клерк Максвелл. Атом // Статьи и речи. — М.: Наука, 1968. — С. 157. — 423 с.
- ↑ Визгин В. П., 1981, с. 56—57..
- ↑ Albert A. Michelson, Edward W. Morley. On the Relative Motion of the Earth and the Luminiferous Ether. The American Journal of Science. III series. Vol. XXII, No. 128, P.120 — 129.
- ↑ См. Повторения опыта Майкельсона.
- ↑ Малыкин Г. Б. Эффект Саньяка. Корректные и некорректные объяснения. Успехи физических наук, том 170, № 12 (2000)
- ↑ Эфир возвращается?
- ↑ Эйнштейн А. Собрание научных трудов в четырёх томах. М.: Наука, 1965—1967. Том I, стр. 138.
- ↑ Эйнштейн А. Собрание научных трудов в четырёх томах. — М.: Наука, 1965—1967. Том I, стр. 682—689.
- ↑ Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. — 5-е изд., перераб. и доп. — М.: Наука, 1980. — С. 211-213, 531..
- ↑ 1 2 Уилл К. Теория и эксперимент в гравитационной физике = Will, Clifford M. Theory and Experiment in Gravitational Physics. Cambridge Univ. Press, 1981. / Пер. с англ.. — М.: Энергоатомиздат, 1985. — 296 с.
- ↑ Clifford M. Will. The Confrontation between General Relativity and Experiment Living Rev. Relativity 9, (2006), 3.
- ↑ Например, поиск этого термина в послевоенных выпусках журнала «Успехи физических наук» практически безрезультатен: Поиск в УФН по метаконтексту «эфир»
- ↑ Уиттекер, 2001, с. 16.
- ↑ Laughlin, Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY : Basic Books, 2005. — P. 120–121. — ISBN 978-0-465-03828-2.
- ↑ Kostro, L. Albert Einstein's New Ether and his General Relativity // Proceedings of the Conference of Applied Differential Geometry. — 2001. — С. 78–86. Архивировано 2 августа 2010 года.
- ↑ Stachel, J. Why Einstein reinvented the ether // Physics World. — 2001. — Вып. 55–56..
- ↑ Kostro, L. An outline of the history of Einstein's relativistic ether concept //In: Jean Eisenstaedt & Anne J. Kox, Studies in the history of general relativity, 3. — Boston-Basel-Berlin: Birkäuser, 1992. — P. 260–280. — ISBN 0-8176-3479-7.
- ↑ Сергеев, А. Г. Синекдоха отвечания, или Защита гомеопатическая // В защиту науки. — 2017. — № 19. — С. 90.
...существуют десятки настоящих лженаук, таких как астрология и хиромантия, экстрасенсорика и парапсихология, криптобиология и биоэнергетика, биорезонанс и иридодиагностика, креационизм и телегония, уфология и палеоастронавтика, эниология и дианетика, нумерология и соционика, физиогномика и графология, информациология и универсология, лозоходство и контактерство, дерматоглифическое тестирование и геопатогенные зоны, геополитика и лунный заговор, теории эфира и торсионных полей, памяти воды и волновой генетики
Литература
- Богородский А. Ф. Всемирное тяготения. — Киев: Наукова думка, 1971. — 351 с.
- Визгин В. П. Релятивистская теория тяготения. Истоки и формирование. 1900-1915 гг.. — М.: Наука, 1981. — 352 с.
- Гольдгаммер Д. А. Эфир, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Декарт Рене. Первоначала философии // Сочинения в двух томах. — М.: Мысль, 1989. — Т. I.
- Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
- Роузвер Н. Т. Перигелий Меркурия. От Леверье до Эйнштейна = Mercury's perihelion. From Le Verrier to Einstein. — М.: Мир, 1985. — 244 с.
- Спасский Б. И. История физики. — М.: Высшая школа, 1977.
- Терентьев И. В. История эфира. — М.: ФАЗИС, 1999. — 176 с. — ISBN 5-7036-0054-5.
- Уиттекер Э. История теории эфира и электричества. Том 1. — М.: Регулярная и хаотическая динамика, 2001. — 512 с. — ISBN 5-93972-070-6.
- Уиттекер Э. История теории эфира и электричества. Том 2. — М.: Институт компьютерных исследований, 2004. — 464 с. — ISBN 5-93972-304-7.
wikiredia.ru
Светоносный эфир или Среда передачи электромагнитных волн | Блог Sage
Поскольку традиционное образование забивает головы людей тоннами формул и математических абстракций со школьных и институтских лет, у многих возникают трудности с пониманием такого очевидного факта, как наличие среды для распространения электромагнитных волн.
Официальная наука говорит нам, что электромагнитным волнам среда передачи не нужна, в отличие например от звуковых. Бред получается, ведь волна есть колебание среды. Если нет среды - то что тогда колеблется?
Для особо любознательных придумали понятие электромагнитного поля, которое "появляется" между противоположными зарядами, при всем этом не имея внятного понимания, чем же сам этот заряд является. Понимания нет не только касаемо зарядов, но и касаемо гравитации, инерции, электрического тока. Зато есть кучи формул, названий и знание некоторых свойст и характеристик оных.
Итак, что же это за эфир такой, о котором говорили и писали с древности и до наших дней, точнее до времен Теслы, пока Эйнштейн не вычеркнул его из науки своей(?) теорией относительности?
Как уже было сказано выше, любому виду колебаний нужна среда. Электромагнитные волны не являются в данном случае исключением. Как видно на классическом рисунке в начале поста, взятом из школьной программы, электромагнитные волны имеют длину волны и/или частоту колебания, имеющие обратно-пропорциональную зависимость.
То есть с уменьшением длины волны, частота ее колебаний возрастает, и наоборот. На подобной картинке ниже хорошо показан тот маленький диапазон частот электромагнитных волн, видимых человеческому глазу - оптическое излучение.
Что такое свет? - спрошу я вас. Люди, знакомые со школьной программой физики, непременно ответят мне - поток фотонов. А что же такое фотоны? - спрашиваю я. Субатомные частички, наряду с протонами, нейтронами и электронами - ответите вы мне. Итак имеем кучу названий, определений, формул, но не имеем главного - сути, то есть понимания. Откуда же оно возьмется, если нам со школы отвлекают внимание от сути? Мы уподобляемся наблюдателям забавного карточного фокуса, когда искусные шулера и иллюзионисты отвлекают наше внимание в выгодном им направлении, а пока мы смотрим "не туда", подтасовывают нам карты.
Итак, если фотон - это частичка, переносящая энергию, воспринимаемую нами как свет, тогда звукон - частичка, переносящая энергию, воспринимаемую нами как звук. Если есть фотоны, то почему тогда не быть звуконам? Таким же образом, почему бы тогда не назвать частички инфракрасного излучения, воспринимаего нами как тепло и "антибактериального" ультрафиолетового излучения, к примеру - инфратоном и ультратоном? Бред - скажете вы и... будете правы. Бред, как и то, что фотон - частичка. Странное дело получается, что одни и те же электромагнитные волны называют то частичками, то излучениями, то волнами, в зависимости от разной длины или частоты. Радиоволны, используемые для связи и навигации, никто не называет частичками, так же как и инфракрасное излучение - тепло, а вот узкий спектр видимого света называют частичками фотонами.
Видимое излучение может вести себя как частичка, например отражаясь от некоторых поверхностей под тем же углом, под которым падает. Но, поглощаясь другими поверхностями - ведет себя как волна, передавая свою энергию этой поверхности.
Волна имеет свою скорость распространения в разных средах, например звук в воздухе распространяется со скоростью 340 м/с, а воде уже со скоростью 1500 м/с. Когда говорят о скорости света 300 миллионов м/с, подразумевают эталонную ее скорость, в так называемом вакууме - в безвоздушном пространстве между Солнцем и Землей, Солнцем и Альфа Центаврой и т д. Так что происходит со светом, пока он "летит" к нам от Солнца в так называемом вакууме? Являясь электромагнитной волной, свет вдруг "становится" частичкой, летящей в пустоте вакуума, а при подлете к Земле вновь превращается в волну? По такой аналогии можно сказать, что пока водная волна идет от одного берега к другому, самой воды нет. И еще к примеру: пока звуковая волна идет от моего рта к вашему уху, то воздуха, колебаниями которого является звук - также нет. Бредово звучит? Полностью с вами согласен! Также бредово, как и то, что электромагнитные волны могут существовать без среды передачи, коей является эфир.
Подводя итог сказанному, поразмыслите на досуге, откуда все эти выражения "выйти в эфир", "прямой эфир", "у нас в эфире" и т.д.
Источник
×cont.ws