Справочник химика 21. Химия органическая эфиры
Органические эфиры - Справочник химика 21
Спирты превращают в органические сложные эфиры взаимодействием с хлорангидридами карбоновых кислот (ацилхлоридами). Ниже показан синтез органического эфира — этилацетата. [c.412]
Манометры со сложными органическими эфирами в качестве наполнителей [c.146]
Наиболее ценное свойство ТЭС — низкая вязкость (ниже вязкости воды), что определяет его хорошую проникающую способность в пористые материалы. ТЭС, как и обычные органические эфиры, является хорошим растворителем для многах полимерных консервантов (например, ПБМА) и практически для всех кремнийорганических олигомеров и полимеров. Достаточно высокая реакционная способность ТЭС приводит к тому, что, в отличие от обычных растворителей, он способен взаимодействовать с материалом, в который введен, с образованием кремне-геля. Так как ТЭС после гидролиза и полимеризации имеет значительно [c.29]
Сульфосукцинаты получают взаимодействием малеинового ангидрида с низшими жирными спиртами с образованием моно- и диэфиров малиновой кислоты. Образование моноэфиров — быстрый процесс, протекающий при 50-60 °С, однако дальнейшая этерификация до диэфиров требует более жестких условий. Моно- и диэфиры реагируют с водным сульфитом натрия или гидросульфитом натрия при 70-90 С. Как правило, протеканию реакции способствует добавление низших спиртов, обычно изоп-ропанола, который выступает в качестве солюбилизатора органических эфиров и водной фазы. Наиболее удобным способом контроля над протеканием реакции является титрование непрореагировавшего сульфита (уравн. 1.42). [c.52]
Изучены фунгицидные, гербицидные и инсектицидные свойства многих органических эфиров сернистой кислоты [13—15]. Наиболее эффективны в качестве акарицидов смешанные эфиры сернистой кислоты (см. ниже) [14, 15]. Акарицидная [c.357]
К p 10 r e p Д., Ацетилцеллюлоза и другие органические эфиры целлюлозы, ГОНТИ, Гл. ред. хим. лит., 1938. [c.147]
В электроде с жидкой мембраной, селективной к иону кальция, ионитом служат органические эфиры фосфорной кислоты. При погружении электрода в анализируемый раствор на обеих поверхностях органического слоя устанавливаются равновесия [c.106]
Желтое комплексное соединение, образующееся при взаимодействии ортофосфат-ионов с молибдатом в кислой среде, под действием восстановителей превращается в интенсивно окрашенное синее соединение. Из всех применяемых для этой цели восстановителей наиболее устойчивые окраски дает аскорбиновая кислота. Однако восстановление аскорбиновой кислотой происходит только при повышенной температуре, т. е. в условиях, когда полифосфаты и органические эфиры фосфорной кислоты гидролизуются с образованием ортофосфорной кислоты. [c.211]
Настоящие технические условия распространяются на рабочую жидкость 7-50С-3, представляющую собой смесь полисилоксановой жидкости и органического эфира с добавкой противоизносной присадки и ингибиторов окисления и предназначаемую для работы в специальных гидросистемах в температурном интервале — 60 + 200° С. [c.376]
Рабочая жидкость изготовляется из смеси полисилоксановой жидкости и органического эфира с добавками противоизносной присадки и ингибиторов окисления. [c.238]
Органические эфиры этого спирта легко гидролизуются водой даже на холоду. Так же легко гидролизуются и третичные галоидопроизводные. При нагревании смеси последних с водой образующийся при этом третичный спирт дегидратируется в присутствии появляющейся одновременно галоидоводородной кислоты. Таким путем из третичного иодистого бутила можно получать изобутилен [c.432]
Реакции второго порядка типа II являются, вероятно, наиболее общим случаем всех изученных реакций. Несколькими типичными примерами могут служить газофазное образование иодистого водорода (НгН- г—5>2Н1) [13] реакции свободных радикалов с молекулами, например Н + Вгз—> НВг Вг [14] известный синтез мочевины из ионов NH и СМО [15] гидролиз органических эфиров в неводных средах [16] и реакция третичных алкилами-нов с алкилгалогенами с образованпем четвертичных аммониевых солей (RзN + R X R RзN + X ) [17]. [c.26]
В процессе исследований диэлектрических свойств шерстяного воска Драйден и Мекинс (1957) получили различные пики частотной зависимости фактора потерь (рис. .35). Опи объяснили это межфазной по.чяризацией. Шерстяной воск, являющийся сложной смесью органических эфиров, обладает способностью образовывать эмульсии В/М. Авторы приготовили сферические дисперсии сильным [c.371]
Рабочая жидкость 7-50С-3 (ГОСТ 20734-75) — синтетическая жидкость, применяют в гидравлических агрегатах и гидравлических системах летательных аппаратов в диапазоне темпераэур от -60 до +175 °С длительно, с перегревами до 200 °С рабочие давления до 21 МПа. Жидкость изготавливают из смеси полисилоксановой жидкости и органического эфира с добавлением противоизносной присадки и ингибиторов окисления. [c.219]
БОРАТЫ ОРГАНИЧЕСКИЕ, эфиры ортоборной к-ты НзВОз o6nie,ii с]з-лы (RO)3B, где R — алкил илп арнл. Низшие алис]з. Б.— летучие жидк. горят зеленым пламенем (качеств, р-цня иа бор). Б. гидролизуются водой до В(ОН)з и ROH, с хлоро.м дают смесь B I.3, СОСЬ и НС1, при [c.79]
НИТРАТЫ ОРГАНИЧЕСКИЕ, эфиры азотной к-ты. Содержат в молекуле одну или неск. ОЛОг-групп, связанных сорг. радикалом. Бесцв. или бледно-желтые жидк. не раств. в воде, хорошо раств. в сп. и эф. Многие взрывоопасны, термически нестабильны. Окисляют гемоглобин в метгемо-глобйн, вызывают головную боль и головокружение. Легко гадро 1и зуются в кислой и щел. средах до спиртов и олефинов восст. до спиртов. Н. о.— нитрующие агенты аром, [c.381]
ГИПОФОСФЙТЫ ОРГАНИЧЕСКИЕ (эфиры фосфорно-ватистой к-ты) Различают полные Г. о (RO)2PH и кислые, существующие в виде двух таутомеров (равновесие сдвинуто влево) [c.572]
Целлюлозу с гидрофобными свойствами получают ацетилированием или си-ликонизированием. Ацетилированная целлюлоза растворима в некоторых органических растворителях галогенированных углеводородах, диоксане, кетонах, органических эфирах. [c.131]
Неионогенные ПАВ применяются в основном для удаления масляных пятен и для снижения пенообразования, вызываемого анионными ПАВ. Они не ионизируются при растворении и не чувствительны к действию солей жесткости воды, но обладают меньшей растворимостью в растворах электролитов, чем анионные ПАВ (например, ЛАБСК), а значит для придания стабильности получаемому раствору может возникнуть необходимость в использовании гидротропов (например, ксилолсульфоната натрия или органических эфиров фосфорной кислоты). Гидротропы — это соединения, применяемые для растворения ПАВ и для растворения нерастворимых в воде веществ. Типичные представители неионогенных ПАВ, используемых для получения таких составов, — этоксилаты линейных спиртов и этоксилаты алкилфенолов. [c.83]
Однако восстановление аскорбиновой кислотой происходит только при повышенной температуре, т. е. в условиях, когда полгь фосфаты и органические эфиры фосфорной кислоты гидролизуются с образованием ортофосфорной кислоты. [c.216]
В огромном разнообразии биохимических реакций особая роль принадлежит фосфатам аденозина. Гидролиз аденозинтри-фосфата на дифосфат и неорганический фосфат и дифосфата — до монофосфата влечет за собой значительно большее уменьшение свободной энергии, чем гидролиз монофосфата на аденозин и неорганический фосфат для последней реакции это значение примерно такое же, как для гидролиза большинства простых органических эфиров фосфорной кислоты. [c.523]
Известен взрыв в аппаратуре периодического процесса разгонки кубовых остатков в производстве сложных органических эфиров. Технологическая система разгонки кубовых остатков состояла из куба-испарителя, дефлегматора, холодильника, фазоразделителя, вакуум-приемника (рис. V1II-7). Операция вакуум-дистилляции кубовой жидкости осуществлялась под вакуумом в течение 3—4 ч. После окончания отгонки легкокипящих компонентов из кубовых остатков оставшуюся тяжелую фракцию откачивали из куба при небольшом избыточном давлении. Переход с режима вакуума на режим избыточного давления в системе дистилляции производился открытием вентиля на воздушке. При этом аппаратура заполнялась атмосферным воздухом, что приводило к образованию взрывоопасных смесей паров горючих веществ с воздухом. [c.272]
Рабочая жидкость 7-50С-3, МРТУ 38-1-195—66, представляет собой прозрачную смесь полисилоксановой жидкости и органического эфира с противоизносной присадкой и ингибнтси)ом окисления. Рабочая жидкость 7-50С-3 предназначена для гидросистем, работающих в температурном интервале минус 60 — плюс 200° С. [c.211]
Классическим примером ценности метода экстракции служит омыление органических эфиров. Так, при нагревании этил-бензоата с водным раствором гидроокиси натрия образуется смесь бензоата натрия, этилового спирта, непрореагировавшего эфира и других веществ. В большинстве случаев целевым продуктом является бензойная кислота, которую необходимо выделить из смеси веществ различной полярности. Удобная для экстракции пара жидкостей — вода и эфир (дпэтиловый), поскольку онп относительно мало растворимы друг в друге, и неполярные или малополярные вещества обычно лучше растворяются в эфире, а ионные вещества — в воде. (Можете лп вы объяснить это на основе ДЯ и молекулярных сил ) Следовательно, после распределения продуктов реакции омыления между водой и эфиром беизоат натрня, другие ионные вещества и этиловый спирт будут находиться в водном слое. После отделеиия воды от эфира водный слой можно подкислить, чтобы образовалась электронейтральная бензойная кислота, которая почти нерастворима в воде, но очень хорошо раствор1 ма в эфире. Еслп добавить новую порцию эфира к смеси воды и кислоты и затем отделить эфирный слой, можно получить концентрированный эфирный раствор практически чистой бензойной кислоты. После испарения эфира остается кристаллическая бензойная кислота. Используя тот факт, что бензоат натрия хорошо растворим в воде и практически нерастворим в эфире, а бензойная кислота растворима главным образом только в эфире, можно повторять процесс [c.168]
Снлильные эфиры находят все более широкое применение в органической химии в качестве защитных групп или промежуточных соединений [122]. Эти простые эфиры обычно получают [123] путем замещения, как показано в уравнениях (49) — (51). В некоторых случаях, например при использовании хлорсилаиа [уравнения (49) и (50)], используемые реагенты аналогичны применяемым в синтезе органических эфиров, однако в других случаях. [c.322]
Сущность метода. При взаимодействии ортофосфат-ионов с молибдатом в кислой среде образуется желтая гетерополикис-лота, которая под действием восстановителей превращается в интенсивно окрашенное синее соединение. Были предложены различные восстановители, но из них наиболее устойчивые, постоянные по составу продукты реакции дает лишь ас(корбиновая кислота. Однако восстановление аскорбиновой кислотой, сравнительно слабым восстановителем, лроисходит только при повышенной температуре, т. е. в условиях, когда полифосфаты и органические эфиры фосфорной кислоты гидролизуются с образованием ортофосфорной кислоты, поэтому результаты получаются повышенными. Введение в раствор соли сурьмы приводит к образованию более сложного соединения, в состав которого входит сурьма в соотношении 5Ь Р = 1 1. Реакция тогда проходит быстро и при комнатной температуре, повышается интенсивность окрас ки, а полифосфаты и сложные эфиры фосфорной кислоты в этих условиях в реакцию не вступают, результаты показывают лишь содержание ортофосфат-ионов в пробе. [c.211]
Почти одновременно с открытием ДДТ было найдено, что некоторые органические эфиры фосфорной кислоты обладают сильными инсектицидными свойствами. В определенных пределах их активность может быть связана со способностью выступать в качестве фосфорилирующих агентов. Инсектициды данной группы токсичны как для насекомых, так и для млекопитающих, поскольку они фосфорилируют (и тем самым блокируют) фермент ацетилхолинэстеразу, ответственный за возникновение и передачу нервных импульсов. Инактивирующее действие фосфорорганических ядов можно приближенно представить как нуклеофильную атаку аниона, образовавшегося за счет связанной с ферментом первичной гидроксильной группы, на атом фосфора с отщеплением уходящей группы Ь (схема а). [c.480]
Фенолы реагируют с кремнием так же, как спирты [НИИ. Аналогом этого метода является реакция между смесью эфира, хлористого водорода и кремния при повышенной температуре с образованием соответствующих органических эфиров кремневой кислоты [Н42, Н258]. При помощи эфира можно также этерифици-ровать галоидсиланы в присутствии катализаторов хлористого алюминия или хлористого водорода [Н43, Н119, Н120]. [c.118]
chem21.info
|
sites.google.com
СЛОЖНЫЕ ЭФИРЫ - цветков эксперемент по органической химии
СЛОЖНЫЕ ЭФИРЫ
При демонстрации способа получении сложных эфиров образующийся продукт обычно собирается в виде слоя над жидкостью, что трудно наблюдать учащимся на расстоянии. Наиболее убедительный признак образования эфира — появление характерного запаха. Поэтому первое ознакомление с получением эфиров лучше всего провести в виде лабораторного опыта.
Чтобы иметь возможность познакомить учащихся с получением различных эфиров и сделать заключение о том, что реакция этерификации является общей для образования веществ данного класса, можно одновременно дать учащимся синтез разных эфиров (например, метилового, этилового эфиров уксусной кислоты, этилового эфира муравьиной кислоты и др.).
Синтез этилового эфира уксусной кислоты (этилацетата). Опыт можно поставить так, чтобы одновременно показать влияние катализатора (серной кислоты) на скорость процесса.
1. В пробирку наливают 0.5 мл концентрированной уксусной кислоты (эссенции) и равный объем этанола. Запах эфира не обнаруживается даже при подогревании смеси.
После этого в пробирку добавляют 0,5—1 мл концентрированной серной кислоты. Появляется запах эфира, усиливающийся при дальнейшем нагревании.
2. В широкую пробирку (колбочку) наливают по 3 мл спирта, уксусной кислоты и концентрированной серной кислоты. Пробирку закрывают пробкой с обратным холодильником для конденсации паров спирта и эфира и нагревают в стакане с кипящей водой в течение 3—5 мин. Затем выливают жидкость в пробирку с насыщенным раствором поваренной соли. Серная кислота, а также не прореагировавшие спирт и уксусная кислота растворяются, эфир же высаливается и образует верхний слой, при этом ощущается сильный запах. Переливают смесь в делительную воронку и отделяют эфирный слой.
3. В небольшую колбу с отводной трубкой наливают по 10 мл этанола и уксусной кислоты и 5 мл концентрированной серной кислоты. Соединяют колбу с нисходящим холодильником (желательно водяным, так как точка кипения эфира 77°С) и отгоняют на кипящей водяной бане образующийся сложный эфир (до уменьшения объема в колбе наполовину).
Реакция этерификации обратима, но в этих условиях равновесие сдвигается вправо вследствие улетучивания эфира.СН3СООН + НОС2Н5 СН3СООС2Н5 + Н2OВместе с эфиром частично перегоняется спирт и в некоторой степени уксусная кислота (обычно спирт для реакции берут в избытке по сравнению с теоретически рассчитанным количеством).
Добавляют немного воды к дистилляту и смесь взбалтывают. Кислота и спирт растворяются в воде, эфир собирается слоем сверху. Демонстрируют продукт в таком виде или после отделения от водного слоя с помощью делительной воронки.
. Получающийся эфир содержит еще некоторое количество спирта, кислоты и воды. Однако дальнейшая очистка его в условиях демонстрационного опыта нецелесообразна.
4. Чтобы убедительно показать учащимся отщепление воды oт молекул спирта и кислоты при этерификации, можно провести реакцию, взяв в качестве катализатора безводный сульфат меди. Посинение последнего укажет на образование воды в ходе реак-
ции. Некоторая сложность проведения опыта связана с тем, что для реакции требуются безводные реагенты (кислота и спирт).
В колбочку (рис. 34) наливают равные объемы спирта и кислоты и помещают 1—2 г безводного сульфата меди. К колбе присоединяют обратный холодильник с хлоркальциевой трубкой для защиты от атмосферной влаги. При встряхивании колбы уже без нагревания начинается постепенное посинение сульфата меди, что указывает на начало реакции. При нагревании смеси на водяной бане в течение 10 мин соль довольно быстро синеет и образуется значительное количество эфира. Запах становится очень сильным при выливании смеси в насыщенный раствор хлорида натрия.
5. С целью получения чистого образца этилацетата опыт ставят следующим образом (рис. 35).
В круглодонную колбу с капельной воронкой и отводной трубкой наливают 10 мл спирта и 10 мл концентрированной серной кислоты. Колбу нагревают через асбестированную сетку, чтобы термометр, опущенный в жидкость, показывал примерно 120°С, и добавляют из капельной воронки смесь 20 мл спирта и 20 мл уксусной кислоты с той же скоростью, с какой отгоняется эфир.
Чтобы освободить дистиллят от примеси уксусной кислоты, его нейтрализуют, добавляя постепенно насыщенный раствор карбоната натрия, контролируя с помощью лакмусовой бумажки рН среды. Смесь при этом пенится, особенно вначале, от выделяющегося углекислого газа. Отделяют эфир от водного слоя с помощью делительной воронки, взбалтывают с 10—15 мл 50-процентного водного раствора хлорида кальция. Хлорид кальция образует со спиртом молекулярное соединение и тем самым очищает эфир. Снова на делительной воронке отделяют эфир, добавляют к нему безводный сульфат натрия для связывания воды и перегоняют на водяной бане при температуре 77°С.
Получение этилового эфира бензойной кислоты (этилбензоата). В данном случае процесс этерификации протекает согласно следующему уравнению реакции:С6Н5СООН + НОС2Н5 С6Н5СООС2Н5 + Н2ОВ пробирке растворяют 1 г бензойной кислоты в 3-4 мл спирта и добавляют 7—8 капель концентрированной серной кислоты. При нагревании ощущается мятный запах эфира. При выливании в воду эфир всплывает наверх.
Синтез аспирина. Уксусный ангидрид является сильным ацилирующим средством и часто используется для получения сложных эфиров.
Ацилируя им салициловую кислоту (по фенольному гидроксилу), можно получить широко известное лекарственное средство — аспирин:Как видно из формулы, аспирин одновременно является и ароматической кислотой, и сложным эфиром.
Для опыта взвешивают 1,3 г салициловой кислоты и 1,2 г уксусного ангидрида. Помещают вещества в небольшую колбочку, прибавляют к ним каплю концентрированной серной кислоты, за-
крывают колбу пробкой с обратным холодильником и нагревают смесь на водяной бане при 60°С в течение часа. Затем продолжают нагревание еще в течение часа при 90°С. После этого смесь в колбе охлаждают; отфильтровывают кристаллы аспирина (лучше это сделать на воронке Бюхнера) и промывают осадок ледяной водой. Для получения более чистого препарата необходимо дополнительно промыть его небольшим количеством холодного толуола. Сухой осадок взвешивают и определяют выход продукта по сравнению с теоретическим.
С аспирином можно проделать ряд опытов, но, разумеется, из-за недостаточной чистоты нельзя принимать его в качестве лекарства.
Гидролиз сложных эфиров. Опыты по гидролизу сложных эфиров расширяют общие представления учащихся о химической реакции, так как в весьма наглядной форме дополняют их сведениями об обратимости реакций и роли катализаторов.
Как известно, гидролиз катализируется минеральными кислотами, которые служат катализаторами и в реакции этерификации:Не сдвигая равновесия в ту или другую сторону, минеральные кислоты значительно ускоряют наступление равновесия. Гидролиз эфиров в очень сильной степени ускоряется в присутствии щелочей, так как они связывают (превращают в соль, т.е. омыляют) образующуюся кислоту, вследствие чего реакция идет до конца в сторону разложения эфира.
а) В три пробирки помешают по нескольку капель этилацетата. В одну пробирку приливают воду в таком количестве, чтобы эфир только растворился в ней, в другую пробирку приливают раствор щелочи, в третью — раствор серной кислоты. Пробирки встряхивают и оставляют стоять или нагревают на водяной бане (в стакане с горячей водой). Через некоторое время убеждаются, что в пробирке со щелочью запах эфира быстро исчезает, в пробирке с кислотой он ослабевает, а в пробирке с водой остается без изменений.
В пробирке с кислотой удается обнаружить нары уксусной кислоты с помощью влажной лакмусовой бумажки (серная кислота нелетуча). В пробирке с водой не удается обнаружить кислоту даже в растворе (если препарат эфира был чистым).
б) В две пробирки помещают по 2 мл этилового эфира бензой-
ной кислоты. В одну пробирку приливают около 8 мл раствора серной кислоты (1 : 1), в другую — такой же объем воды. Нагревают пробирки в течение нескольких минут в пламени спиртовки. При охлаждении в первой пробирке выпадает осадок — кристаллы бензойной кислоты, во второй пробирке осадок не образуется, так как гидролиз не прошел.
в) В колбочку наливают 1 мл этилацетата и растворяют его в воде (около 20 мл). Убеждаются, что раствор (в отдельной пробе) не изменяет окраски лакмуса. Добавляют к раствору в колбе 2—3 капли фенолфталеина и очень немного раствора гидроксида натрия, чтобы только появилось не исчезающее при взбалтывании розовое окрашивание. Закрывают колбу пробкой с обратным холодильником и нагревают смесь в пламени горелки до кипения, после чего дают смеси остыть. Окраска фенолфталеина исчезает, так как щелочь нейтрализуется образующейся при гидролизе кислотой. Добавляют еще несколько капель щелочи и снова нагревают смесь до исчезновения окраски,
Прибавляя к образующемуся нейтральному раствору раствор хлорида железа (III), убеждаются в появлении уксусной кислоты при гидролизе эфира.
г) При длительном омылении эфира щелочью можно провести глубокий гидролиз и не только обнаружить, но и выделить образующиеся продукты.
Опыт можно дать для самостоятельной разработки учащимися.
Идея его такова. Если эфир кипятить со щелочью (25—30-процентной), взяв ее с некоторым избытком против количества, необходимого для нейтрализации образующейся кислоты, то через некоторое время эфирный слой вследствие гидролиза совершенно исчезнет. Чтобы эфир и спирт при этом не улетучивались (уксусная кислота будет в виде соли), кипячение следует вести в колбе с обратным холодильником. Пары спирта после окончания опыта .могут быть обнаружены по их горению. Кроме того, спирт можно отогнать и обнаружить иодоформной реакцией. Раствор ацетата натрия со щелочью можно обработать концентрированной серной кислотой, после чего отогнать уксусную кислоту.
Гидролиз аспирина. По месту сложноэфирной группировки аспирин может подвергаться гидролизу с образованием салициловой и уксусной кислот:Салициловая кислота, содержащая в молекуле фенольный гидроксил, может быть обнаружена при помощи раствора хлорида железа (III).
Очень небольшое количество аспирина (примерно 0,1 г) растворяют в 4—5 мл воды. Часть раствора испытывают 1—2 каплями раствора хлорида железа. Характерной для фенолов окраски не наблюдается.
Другую часть раствора аспирина кипятят 2—3 мин и после охлаждения также испытывают хлоридом железа. В данном случае наблюдается характерное окрашивание, свидетельствующее о появлении в растворе салициловой кислоты (фенольного гидроксила).
Получение метилового эфира метакриловой кислоты (метилметакрилата) из органического стекла. Органическое стекло (плексиглас) широко применяется сейчас в технике и для изготовления многих предметов повседневного обихода (чернильницы, ручки, шкатулки, мундштуки, пуговицы и т.п.). Оно представляет собой полимер метилового эфира метилакриловой (метакриловой) кислотыСтроение полимера можно изобразить в виде следующей схемы:В предыдущих темах учащиеся познакомились со свойствами высокомолекулярных веществ и с их получением путем полимеризации и поликонденсации. На примере данного эфира можно их познакомить с разложением (деполимеризацией) высокомолекулярного продукта.
Опыт очень легко осуществляется и производит большое впечатление на учащихся.
В пробирку или колбочку с отводной трубкой и нисходящим воздушным холодильником насыпают стружки или мелкие кусочки органического стекла. Нагревая колбу через асбестовую сетку или на голом пламени, деполимеризуют органическое стекло и перегоняют образующийся при этом эфир. Перегонку можно производить без контроля термометром. До полного разложения всего органического стекла опыт лучше не доводить, так как продукт начинает обугливаться и колбу после опыта бывает трудно отмыть. В
приемнике собирается прозрачная, бесцветная жидкость с эфирным запахом — метилметакрилат.
Если эфир имеет слегка желтую окраску, его повторно перегоняют. отбирая фракцию в интервале 97-103°С (чистый эфир кипит при 100°С).
Получение полиметилметакрилата. Превращение метилового эфира метакриловой кислоты в высокомолекулярный продукт — полиметилметакрилат — наиболее доступный для школы пример реакции полимеризации.
Наливают в пробирку около 10 мл очищенного метилметакрилата. добавляют очень немного сухой перекиси бензоила (0,05 г) и встряхивают до растворения.Затем реакционную смесь нагревают на водяной бане при 80— 85°С. Через 15-20 мин замечается увеличение вязкости жидкости. При дальнейшем нагревании жидкость постепенно превращается в твердую стекловидную массу. Пробирку разбивают и извлекают стерженек образовавшегося полимера. Можно получить окрашенный образец, если к исходному мономеру добавить небольшое количество органического красителя. Иногда полимеризацию метилового эфира метакриловой кислоты удастся наблюдать без применения катализатора при длительном стоянии жидкости.
Опыты с полиметилметакрилатом. Кроме деполимеризации с полиметилметакрилатом можно провести следующие опыты.
а) Нагревают над пламенем горелки или на асбестовой сетке пластинку из органического стекла, затем сгибают ее. Убеждаются, что полимер обладает свойством термопластичности.
б) Поджигают кусочек полиметилметакрилата. Он горит голубым некоптящим пламенем с характерным потрескиванием; ощущается эфирный запах.
перейти в каталог файловuhimik.ru