Архитектурно-строительный справочник. Применение эфир целлюлозы в строительстве


Соединения эфиров целлюлозы для улучшенных высокотемпературных эксплуатационных характеристик строительных растворов систем внешнего изоляционного покрытия (eifs)

Группа изобретений относится к строительным растворам. Технический результат - увеличение срока годности после смешивания компонентов, водоудерживающей способности и открытого времени строительного раствора, высокие значения предела прочности на разрыв при использовании заявленного строительного раствора. Строительный раствор систем внешнего изоляционного покрытия (EIFS), предназначенный для нанесения при высоких температурах, характеризующийся увеличенным сроком годности после смешивания компонентов и повышенной водоудерживающей способностью, включает цемент, наполнитель/заполнитель, смесь метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы, достаточное количество воды, чтобы обеспечить соответствующую консистенцию строительного раствора, где количество смеси метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы составляет от приблизительно 0,1 мас. % до приблизительно 1 мас. % в расчете на массу сухого строительного раствора на основе EIFS, и где массовое соотношение метилгидроксиэтилцеллюлоза/гидроксиэтилцеллюлоза в смеси составляет величину в диапазоне от приблизительно 10:90 до приблизительно 90:10. 3 н. и 10 з.п. ф-лы, 3 ил., 6 табл., 6 пр.

 

Родственные заявки

В настоящей заявке испрашивается приоритет в связи с предварительной заявкой US №61/520383, поданной 9 июня 2011 г., содержание которой включено в настоящее описание в качестве ссылки.

Область техники, к которой относится настоящее изобретение

Настоящее изобретение относится к соединениям эфиров целлюлозы, которые можно использовать для увеличения срока годности после смешивания компонентов, водоудерживающей способности и открытого времени строительных растворов и в то же время обеспечивать высокие значения предела прочности на разрыв, которые используют при получении систем внешнего изоляционного покрытия (EIFS), прежде всего строительных растворов, предназначенных для применения в высокотемпературных условиях.

Предпосылки создания настоящего изобретения

Твердые штукатурные покрытия находят применение с древних времен, вместе с тем в течение более пятидесяти лет во многих странах в строительных работах используют синтетические штукатурки и системы внешнего изоляционного покрытия (EIFS), которые также называют внешними термоизоляционными композиционными системами. Одним из преимуществ EIFS является повышенная теплоизоляция, которая обеспечивается указанными системами, по сравнению с традиционными штукатурками. В условиях повышения цен на энергию интерес к EIFS возрастает. Такие системы снижают затраты на отопление и кондиционирование воздуха, а также способствуют снижению выбросов диоксида углерода. Приблизительно 50% энергии, используемой для отопления зданий, теряется за счет утечки через стены, а теплоизоляция может снизить указанные потери вплоть до 80%.

Типичные EIFS включают ряд компонентов, такие как строительные растворы, теплоизоляционные блоки и арматурная сетка. Основу наиболее широко используемых теплоизоляционных плит составляет полистирол. В некоторых случаях используют другие материалы, такие как стекловолокно или минеральное волокно. Для крепления теплоизоляционных блоков к стене здания используют клеевой раствор. Затем на плиты наносят раствор базового покрытия с заделанной в нем арматурной сеткой, предназначенной для защиты системы от механического повреждения и действия атмосферных условий. «Верхний отделочный слой» распыляют, заглаживают или раскатывают на базовое покрытие. Верхний отделочный слой, как правило, придает цвет и текстуру конструкции.

Во многих регионах мира и в различные времена года создаются такие условия, когда EIFS в большинстве случаев используют при высокой температуре и на горячих субстратах. Применение строительных растворов, используемых в базовом покрытии для EIFS, вызывает ряд трудностей, прежде всего в летние месяцы в условиях жаркого климата в связи с быстрым испарением или удалением воды из строительного раствора, что приводит к несоответствующей или низкой технологичности, а также к недостаточной гидратации строительного раствора. На физические характеристики отвержденного традиционного строительного раствора значительное влияние оказывает процесс гидратации и, в связи с этим, скорость удаления воды из строительного раствора при его нанесении.

Технологичность, срок годности после смешивания компонентов, открытое время, а также стойкость к истиранию и трещиноустойчивость являются основными параметрами, которые снижаются в указанных условиях. Хотя продукты на основе метилгидроксипропилцеллюлозы (МГПЦ) и метилгидроксиэтилцеллюлозы (МГЭЦ) считаются продуктами современной технологии, высокотемпературные эксплуатационные характеристики строительных растворов, содержащих МГПЦ или МГЭЦ, являются неудовлетворительными. Даже при более высоком содержании МГПЦ или МГЭЦ технологичность, трещиноустойчивость, срок годности после смешивания компонентов и открытое время строительных растворов EIFS, содержащих МГПЦ или МГЭЦ, все еще остаются неприемлемыми.

Существует необходимость в разработке строительного раствора EIFS, который характеризуется необходимым сроком годности после смешивания компонентов и открытым временем в условиях жаркого климата, что позволяет наносить строительный раствор EIFS для формирования EIFS и в то же время удерживать достаточное количество воды при смешивании и нанесении, что обеспечивает получение готовой EIFS, характеризующейся необходимыми функциональными и эстетическими свойствами.

Краткое описание сущности изобретения

Настоящее изобретение относится к строительному раствору EIFS, характеризующемуся улучшенными сроком годности после смешивания компонентов и открытым временем в условиях жаркого климата. Строительный раствор EIFS по настоящему изобретению содержит цемент, наполнитель/заполнитель и смесь метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы. Строительный раствор EIFS также содержит достаточное количество воды, чтобы обеспечить соответствующую консистенцию строительного раствора. Количество смеси метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы в строительном растворе на основе EIFS составляет от приблизительно 0,10 мас. % до приблизительно 1 мас. % в расчете на массу сухого строительного раствора EIFS, и при этом массовое соотношение метилгидроксиэтилцеллюлоза/гидроксиэтилцеллюлоза в смеси составляет величину в диапазоне от приблизительно 10:90 до приблизительно 90:10.

Краткое описание чертежей

Следующие варианты осуществления настоящего изобретения описаны со ссылкой на прилагаемые чертежи.

На фиг. 1 показана зависимость водоудерживающей способности от состава строительного раствора EIFS при 70°C.

На фиг. 2 показана зависимость срока годности после смешивания компонентов в минутах от состава строительного раствора на основе EIFS при хранении при 40°C до достижения вязкости 800 Пахс.

На фиг. 3 показан вид EIFS в разрезе, содержащей составы строительного раствора на EIFS по настоящему изобретению.

Подробное описание изобретения

Настоящее изобретение относится к продукту, содержащему простые эфиры целлюлозы, для применения в составе EIFS в условиях жаркого климата. Продукт, содержащий эфиры целлюлозы по настоящему изобретению, позволяет улучшить при высоких температурах различные важные параметры, связанные с процессом нанесения строительного раствора, такие как водоудерживающая способность, срок годности после смешивания компонентов и открытое время.

На фиг. 3 изображена типичная EIFS, при этом различные слои показаны в разрезе. EIFS содержит субстрат-основу 1, которая может состоять, например, из древесины, бетона или кирпичной кладки. Следующий слой 2 представляет собой теплоизоляционный слой или плиту, которую фиксируют на субстрате с использованием клеевого раствора. Следующий слой 3 представляет собой арматурную сетку, которую можно заделывать в слой 4 строительного раствора EIFS, т.е. в арматурный слой строительного раствора. Наконец на внешней/видимой поверхности EIFS находится верхний отделочный слой 5.

Теплоизоляционную плиту изготавливают из полиуретана, вспененного полистирола, экструдированного полистирола, экструдированного полиэтилена, полиизоцианурата или минеральной ваты, такой как стекловолокно, минеральный утеплитель или минераловатный утеплитель из горных пород.

Строительный раствор EIFS включает различные компоненты, включая цемент, наполнитель/заполнитель, агент для контроля реологических свойств, включая смесь метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы, а также достаточное количество воды, чтобы обеспечить соответствующую консистенцию строительного раствора EIFS. Количество агента для контроля реологических свойств составляет от приблизительно 0,1 мас. % до приблизительно 1 мас. % в расчете на массу сухого строительного раствора EIFS. Термин «цемент» включает, но не ограничиваясь только ими, гидравлические цементы, такие как портландцемент (Portland Cement), композитные цементы, которые являются смешанными цементами, содержащими портландцемент и другие компоненты, такие как, например, зола-унос, доменный шлак, известняк, пуццоланы, летучая кремнеземная пыль и т.п., а также их смеси, или глиноземный цемент и т.п. и их смеси.

В целях настоящего изобретения можно эффективно использовать любой тип наполнителя/заполнителя, который обычно используют в строительстве. Примеры пригодных наполнителей/заполнителей включают кремнистый песок, карбонат кальция, доломит, а также легкие заполнители, такие как перлиты, полистирольные зерна, полые стеклянные или керамические шарики/шарики из ячеистого стекла, пробка, смола и т.п., а также их смеси. Количество наполнителя/заполнителя в строительном растворе предпочтительно составляет от 50 мас. % до приблизительно 85 мас. %, более предпочтительно от 60 мас. % до приблизительно 80 мас. % и наиболее предпочтительно от 65 мас. % до приблизительно 75 мас. % в расчете на общую массу сухих ингредиентов.

Агентом для контроля реологических свойств, используемым в строительном растворе EIFS по настоящему изобретению, является смесь метилгидроксиэтилцеллюлозы (МГЭЦ) и гидроксиэтилцеллюлозы (ГЭЦ). Смесь МГЭЦ и ГЭЦ в составе агента для контроля реологических свойств, присутствующем в строительном растворе EIFS, характеризуется соотношением МГЭЦ/ГЭЦ от приблизительно 10:90 до приблизительно 90:10, предпочтительно от приблизительно 30:70 до приблизительно 70:30 или приблизительно 50:50.

Водоудерживающая способность строительного раствора EIFS в основном определяется присутствием эфира целлюлозы. Типичные эфиры целлюлозы, такие как метилгидроксипропилцеллюлоза (МГПЦ) или МГЭЦ характеризуются достаточно высокими эксплуатационными свойствами при температурах вплоть до 40°C, однако при более высоких температурах водоудерживающая способность строительных растворов EIFS, обеспечиваемая только указанными типичными эфирами целлюлозы, значительно снижается.

Результаты испытаний на пригодность свидетельствуют о том, что водоудерживающая способность МГПЦ и МГЭЦ является приемлемой и достаточно высокой, соответственно, при умеренной температуре (10°C-40°C). Однако при повышенных температурах (>40°C), водоудерживающая способность строительных растворов EIFS, обеспечиваемая только указанными типичными эфирами целлюлозы, значительно снижается. Образование трещин и «эффект песка» в строительных растворах EIFS являются следствием недостаточной водоудерживающей способности.

Общеизвестно, что водоудерживающая способность ГЭЦ является чрезвычайно стабильной при высоких температурах. Однако для ГЭЦ наблюдается недостаточная стабильность пасты, что приводит к низкой технологичности и непривлекательному внешнему виду поверхности. Смесь эфиров целлюлозы, а именно ГЭЦ и МГЭЦ, обеспечивает чрезвычайно высокие эксплуатационные характеристики EIFS наряду с высокой водоудерживающей способностью при нормальных и высоких температурах в комбинации с высокой стабильностью пасты.

Строительный раствор EIFS по настоящему изобретению также характеризуется более длительным сроком годности после смешивания компонентов. Срок годности строительного раствора при хранении является важным признаком, который обеспечивает надлежащую технологичность строительного раствора в течение продолжительного периода времени. Строительные растворы EIFS, включающие только МГПЦ или МГЭЦ, не удовлетворяют требованиям потребителей к сроку годности после смешивания, прежде всего при высоких температурах. Строительные растворы EIFS, включающие смесь ГЭЦ и МГЭЦ, характеризуются значительно улучшенным сроком годности после смешивания компонентов. Кроме того, срок годности после смешивания компонентов строительного раствора EIFS можно оптимизировать за счет комбинирования указанных смесей с дополнительными модифицирующими агентами.

Открытое время строительного раствора EIFS является еще одним важным свойством строительного раствора, которое обеспечивает длительную технологичность и продолжительное время разглаживания нанесенного строительного раствора. При высоких температурах влияние эфира целлюлозы на открытое время строительного раствора EIFS крайне ограничено. В связи с этим, строительный раствор EIFS, содержащий смеси эфиров целлюлозы, подвергают дополнительной модификации. Эффективное количество смеси дополнительных агентов в составе модифицированного эфира целлюлозы/модифицированных смесей эфиров целлюлозы, как правило, составляет менее приблизительно 25 мас.% в расчете на общую массу агента для контроля реологических свойств, добавленного в строительный раствор EIFS. Дополнительный агент может включать порошкообразную смесь или порошкообразные неионогенные и/или анионные полиакриламиды и порошкообразный гидроксипропилкрахмал, которые можно добавлять в строительный раствор EIFS, чтобы дополнительно улучшить срок годности строительного раствора после смешивания и/или показатель открытого времени. Указанные смеси увеличивают продолжительность открытого времени строительных растворов EIFS при высоких температурах приблизительно на 50-100% по сравнению со смесями, не содержащими дополнительные агенты. Дополнительные агенты представляют собой порошки, и их можно добавлять в сухой строительный раствор в сухой форме.

Кроме того, указанные специальным образом сформированные (модифицированные) эфир целлюлозы/модифицированные смеси в стандартных условиях повышают значения механической прочности в сухом состоянии.

Примеры приведены для иллюстрации настоящего изобретения, содержание ингредиентов указано в массовых частях и процентах, если не указано иное.

Примеры

Во всех примерах использовали строительный раствор EIFS, включающий портландцемент (Portland Cement СЕМ I 52.5N, 24,0 мас. %), высокодисперсный кремнистый песок (0,5-1 мм, 20,0 мас. %), кремнистый песок (53,0 мас. %), редиспергируемый полимерный порошок (3,0 мас. %), стеарат цинка в качестве гидрофобного агента (0,2 мас. %), эфир целлюлозы (0,15 мас. %).

Эфиры целлюлозы представлены в табл. 1.

В примерах также использовали коммерческую ГЭЦ марки HE-MS 2.5 с вязкостью по Брукфильду (модель вискозиметра LVT, шпиндель №4, 30 об/мин) 2000 мПа×с, полученную стандартным промышленным методом.

Для качественной оценки использовали различные методы испытания. Содержание воды подбирали для достижения сопоставимых величин вязкости от 350000 мПа×с до 400000 мПа×с при измерении в системе Helipath. Консистенцию строительного раствора определяли с использованием вискозиметра и шпиндельной системы (система Helipath).

Пример 1

Улучшение стабильности пасты по сравнению с чистой ГЭЦ

Для определения стабильности пасты использовали следующий метод испытания.

Сухой строительный раствор EIFS (400 г) добавляли в соответствующее количество воды в течение 5 с. Образец перемешивали с использованием кухонного ручного миксера в течение 45 с, затем полученный образец строительного раствора EIFS выдерживали в течение 5 мин. После выдерживания в течение 15 с, образец строительного раствора EIFS снова перемешивали ручным миксером, как указано выше. После смешивания образец строительного раствора закрывали крышкой и хранили при 20°C. Образец строительного раствора больше не перемешивали.

Образец строительного раствора EIFS выдерживали в течение 90 мин, затем осторожно наносили в рамку высотой 8 мм, расположенную на пластине из полистирола. Поверхность нанесенного строительного раствора один раз выравнивали. Для оценки относительных эксплуатационных характеристик нанесенных образцов строительного раствора EIFS проводили субъективную оценку внешнего вида поверхности, оценивая качество поверхности, например, как высокое, приемлемое, низкое.

Испытания проводили с использованием строительного раствора EIFS следующего состава:

24,0% цемента 52.5N,

53,0% песка F34,

20,0% песка (0,5-1 мм),

3,0% редиспергируемого полимерного порошка Aquapas™ N2095 (выпускаемого фирмой Ashland Inc.),

0,2% стеарата цинка.

Дополнительное содержание эфира целлюлозы (ЭЦ) составляло 0,15%.

Анализировали следующие образцы:

- образцы сравнения: МГЭЦ 2, ГЭЦ,

- смеси ГЭЦ/МГЭЦ 2 при соотношении 30%:70% и 50%:50%.

Основными свойствами строительных растворов EIFS являются стабилизация пузырьков воздуха/стабильность пасты. Для образцов строительных растворов EIFS, содержащих ГЭЦ в качестве стабилизатора на основе эфира целлюлозы, наблюдается отсутствие стабильности пасты, что может проявляться в низкой технологичности строительных растворов EIFS и в неудовлетворительном внешнем виде получаемой поверхности.

Как показано в табл. 2, примеры смеси ГЭЦ/МГЭЦ при различных соотношениях позволяют получать строительные растворы EIFS с чрезвычайно высокой водоудерживающей способностью при высоких температурах в комбинации с высокой стабильностью пасты.

Как видно из табл. 2, а также на фиг. 1 и фиг. 2, эксплуатационные характеристики строительных растворов EIFS, содержащих только ГЭЦ в качестве эфира целлюлозы, характеризуются «низкой» оценкой по сравнению с эксплуатационными характеристиками строительных растворов EIFS, содержащих смеси ГЭЦ и МГЭЦ, которые характеризуются «приемлемой» оценкой, и строительные растворы EIFS, содержащие только ГЭЦ, образуют достаточно неровную поверхность, в то время как строительные растворы EIFS, содержащие смеси ГЭЦ и МГЭЦ, образуют ровную поверхность и характеризуются «приемлемой» оценкой.

Пример 2

Водоудерживающая способность строительных растворов EIFS при высоких температурах

Для определения водоудерживающей способности использовали следующую методику. Все материалы и инструменты, используемые при работе со строительными растворами EIFS, хранили в подогревателе при 70°C. Сухой строительный раствор EIFS (400 г) добавляли в соответствующее количество воды при 70°C в течение 5 с. Образец перемешивали с использованием ручного кухонного миксера в течение 45 с, затем полученный образец строительного раствора EIFS выдерживали в течение 5 мин. После выдерживания, образец строительного раствора EIFS снова перемешивали ручным миксером в течение 15 с, как указано выше. Затем строительным раствором EIFS заполняли металлическое кольцо, которое помещали на кусок фильтровальной бумаги. Между фильтровальной бумагой и металлическим кольцом помещали тонкую волокнистую ткань с начесом, при этом фильтровальная бумага находилась на пластиковой пластине. Затем определяли массу конструкции до и после заполнения строительным раствором. Таким образом, определяли массу влажного строительного раствора. Кроме того, регистрировали массу фильтровальной бумаги. Полностью заполненную строительным раствором конструкцию помещали в подогреватель при 70°C для пропитывания в течение 5 мин. После пропитывания снова определяли массу фильтровальной бумаги и рассчитывали водоудерживающую способность (%).

Испытания проводили с использованием строительного раствора EIFS следующего состава:

24,0% цемента 52.5N,

53,0% песка F34,

20,0% песка (0,5-1 мм),

3,0% редиспергируемого полимерного порошка Aquapas N2095 (выпускаемого фирмой Ashland™ Inc.),

0,2% стеарата цинка.

Дополнительное содержание ЭЦ составляло 0,15%.

Исследовали следующие образцы:

- образцы сравнения: МГПЦ, ГЭЦ, МГЭЦ 1, МГЭЦ 2,

- смеси ГЭЦ/МГЭЦ 1 при соотношении 30%:70% и 50%:50%.

Как видно на фиг. 1, при высоких температурах водоудерживающая способность строительных растворов EIFS, содержащих смеси ГЭЦ/МГЭЦ 1, выше по сравнению с водоудерживающей способностью строительных растворов EIFS, содержащих только МГЭЦ 1, МГЭЦ 2 или МГПЦ.

Пример 3

Увеличение срока годности после смешивания компонентов

Для определения срока годности после смешивания компонентов все материалы и инструменты, используемые для получения и нанесения строительных растворов EIFS, хранили перед проведением испытаний в течение минимум 2 ч в подогревателе при 40°C. Основной состав строительного раствора EIFS смешивали, как описано в примере 1. После смешивания образец строительного раствора EIFS закрывали крышкой и хранили в подогревателе при 40°C. Перед определением вязкости в системе Helipath, образец снова перемешивали ручным миксером в течение 5 с, как описано в примере 1. Для каждого образца определяли вязкость в системе Helipath через 0 мин, 30 мин и затем каждые 30 мин в течение 4 ч. Срок годности образца после смешивания компонентов определяли как время, в течение которого вязкость образца строительного раствора EIFS по данным измерений в системе Helipath превышала 800000 мПа×с.

Испытания проводили с использованием строительного раствора EIFS на основе следующего состава:

24,0% цемента 52.5R,

53,0% песка F34,

20,0% песка (0,5-1 мм),

3,0% редиспергируемого полимерного порошка Aquapas™ N2095,

0,2% стеарата цинка.

Дополнительное содержание ЭЦ составляло 0,15%.

Исследовали следующие образцы:

- образцы сравнения: МГПЦ, ГЭЦ, МГЭЦ 1, МГЭЦ 2,

- смеси ГЭЦ/МГЭЦ 1 при соотношении 30%:70% и 50%:50%.

Срок годности после смешивания компонентов необходим для обеспечения надлежащей технологичности строительного раствора EIFS в течение длительного периода времени (1-4 ч). Как видно на фиг. 2, смесь МГЭЦ 1 и ГЭЦ значительно увеличивает срок годности строительных растворов на основе EIFS после смешивания компонентов по сравнению с чистыми МГЭЦ, МГПЦ, а также ГЭЦ. Консистенция строительного раствора сохраняется в течение более длительного периода времени. Кроме стабильности при высоких температурах, строительные растворы EIFS позволяют исключить преждевременное отверждение, и, как следствие, такие строительные растворы EIFS характеризуются технологичностью в течение более длительного периода времени и более высокой эффективностью при нанесении по сравнению со строительными растворами, содержащими только МГЭЦ, МГПЦ или ГЭЦ.

Пример 4

Увеличение открытого времени

Определение открытого времени проводили в камере искусственного климата при 40°C и 30% относительной влажности (ОВ). Перед смешиванием строительных растворов EIFS все материалы и инструменты, используемые для получения и нанесения строительных растворов EIFS, хранили в камере искусственного климата в течение минимум 1 ч. Основной состав строительного раствора EIFS смешивали, как описано в примере 1. Свежий строительный раствор EIFS наносили зубчатым распылителем (10×10 мм) на плиту из полистирола. Через первые 5 мин после начала испытания и затем через каждые 2 мин в ходе испытания в раствор на 30 секунд погружали фаянсовую плитку (5×5 см) под нагрузкой 2 кг. Затем исследовали нижнюю сторону плитки, чтобы определить степень покрытия плитки строительным раствором. Открытое время образца строительного раствора завершалось, когда строительный раствор покрывал менее 50% нижней стороны плитки после ее погружения.

Испытания проводили с использованием строительного раствора EIFS следующего состава:

24,0% цемента 52.5N,

53,0% песка F34,

20,0% песка (0,5-1 мм),

3,0% редиспергируемого полимерного порошка Aquapas™ N2095 (выпускаемого фирмой Ashland Inc.),

0,2% стеарата цинка.

Дополнительное содержание ЭЦ составляло 0,15%.

Исследовали следующие образцы:

ЭЦ: МГЭЦ 2,

смесь ГЭЦ/ЭЦ: ГЭЦ/МГЭЦ 2 (50%:50%).

Открытое время строительного раствора EIFS является важным параметром, который обеспечивает технологичность в течение более длительного периода времени и более длительное время разглаживания нанесенного строительного раствора. Влияние эфира целлюлозы на открытое время при высоких температурах является крайне ограниченным. Можно наблюдать лишь незначительное увеличение открытого времени при замене МГПЦ на смесь ГЭЦ/МГЭЦ (см. табл. 3).

Пример 5

Увеличение открытого времени

Испытания проводили с использованием строительного раствора EIFS следующего состава:

24,0% цемента 52.5N,

53,0% песка F34,

20,0% песка (0,5-1 мм),

3,0% редиспергируемого полимерного порошка Aquapas™ N2095 (выпускаемого фирмой Ashland Inc.),

0,2% стеарата цинка.

Дополнительное содержание ЭЦ составляло 0,15%.

Исследовали следующие образцы:

в примерах сравнения: МГПЦ, МГЭЦ 2,

в примерах: модифицированную смесь ГЭЦ/МГЭЦ 1 при соотношении 30%:70% (в табл.4). Содержание МГЭЦ и ГЭЦ составляло вплоть до приблизительно 81 мас. % в расчете на массу агента для контроля реологических свойств, а состав модифицированной смеси ГЭЦ/МГЭЦ 1, включающей дополнительные агенты, приведен в табл. 4.

Открытое время для строительных растворов EIFS требуется для обеспечения технологичности в течение достаточно длительного периода времени и длительного времени разглаживания, позволяющих наносить строительный раствор. В примерах сравнения влияние эфира целлюлозы, содержащегося в строительном растворе EIFS, на открытое время ограничено при высоких температурах. Можно наблюдать лишь незначительное увеличение открытого времени при замене компонентов на эфир целлюлозы в примерах сравнения.

По сравнению с примерами сравнения, в которых использовали не модифицированную МГЭЦ или МГПЦ, в этом примере при использовании модифицированной смеси эфиров целлюлозы наблюдалось увеличение открытого времени строительного раствора EIFS при высоких температурах (40°C) на 50%-100% наряду с увеличением коэффициента водопоглощения (KB). В табл. 5 приведены результаты, свидетельствующие об увеличении открытого времени модифицированной смеси ГЭЦ/МГЭЦ 1 по настоящему изобретению, обозначенной как образец 11.

* состав модифицированной смеси приведен в табл. 4.

Загустители образца 11 модифицировали при добавлении 19 мас. % смеси дополнительных агентов в расчете на общую массу загустителей, включая 1 мас. % анионного полиакриламида (содержание анионов 0-20 мас. %), вязкость 1 мас. % водного раствора которого составляла 500 мПа×с, 1,5 мас. % анионного полиакриламида (содержание анионов 20-40 мол.%), вязкость 0,5% водного раствора которого составляла 700-900 мПа×с, 1,5 мас. % анионного полиакриламида (содержание анионов 20-40 мас. %), вязкость 0,5% водного раствора которого составляла 2500-5000 мПа×с, и 15 мас. % гидроксипропилкрахмала, содержащего >20% Ch4(Ch3)2OOH, вязкость 5% раствора которого составляла 1000-1800 мПа×с (по данным измерений в вискозиметре Брукфильда при 50 об/мин).

Пример 6

Повышение механической прочности в сухом состоянии

Для определения предела прочности на разрыв строительных растворов EIFS после хранения в сухом состоянии использовали следующую методику.

Строительный раствор EIFS смешивали по методике, описанной в примере 1, затем раствором заполняли рамку (440 мм×67 мм×6 мм), расположенную на пластине из полистирола. Поверхность нанесенного строительного раствора EIFS несколько раз выравнивали, при этом получали совершенно ровную поверхность. Образец хранили в течение 28 сут в камере искусственного климата и испытывали в соответствии со стандартом ETAG4.

Испытания проводили с использованием строительного раствора EIFS следующего состава:

24,0% цемента 52.5N,

54,0% песка F34,

20,0% песка (0,5-1 мм),

2,0% редиспергируемого полимерного порошка Aquapas™ N2095 (выпускаемого фирмой Ashland Inc.),

0,2% стеарата цинка.

Дополнительное содержание ЭЦ составляло 0,15%.

Исследовали следующие образцы:

МГПЦ в качестве образца сравнения, МГЭЦ 2, образец 11 (см. пример 4), который представлял собой модифицированные смеси ГЭЦ/МГЭЦ 1 при соотношении 30%:70%.

В табл. 6 показано повышение значений предела прочности на разрыв новой разработанной модифицированной смеси ГЭЦ/МГЭЦ 1 (образец 11). Через 28 сут значения механической прочности в сухом состоянии строительного раствора EIFS (образец 11), содержащего модифицированную смесь эфиров целлюлозы, повышались по сравнению со значениями механической прочности в сухом состоянии образцов, содержащих не модифицированную МГЭЦ или МГПЦ.

Хотя настоящее изобретение описано с использованием конкретных вариантов его осуществления, следует понимать, что настоящее изобретение не ограничивается указанными вариантами, и возможно множество изменений и модификаций, не выходящих за пределы объема настоящего изобретения.

1. Строительный раствор систем внешнего изоляционного покрытия (EIFS), предназначенный для нанесения при высоких температурах, характеризующийся увеличенным сроком годности после смешивания компонентов и повышенной водоудерживающей способностью, включающий цемент, наполнитель/заполнитель, смесь метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы, достаточное количество воды, чтобы обеспечить соответствующую консистенцию строительного раствора, где количество смеси метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы составляет от приблизительно 0,1 мас. % до приблизительно 1 мас. % в расчете на массу сухого строительного раствора на основе EIFS, и где массовое соотношение метилгидроксиэтилцеллюлоза/гидроксиэтилцеллюлоза в смеси составляет величину в диапазоне от приблизительно 10:90 до приблизительно 90:10.

2. Строительный раствор EIFS по п. 1, где смесь метилгидроксиэтилцеллюлозы и гидроксиэтилцеллюлозы дополнительно включает анионный полиакриламид и гидроксипропилкрахмал.

3. Строительный раствор EIFS по п. 1, где цементом является гидравлический цемент.

4. Строительный раствор EIFS по п. 1, где цементом является композитный цемент, который дополнительно включает по крайней мере один из следующих компонентов: зола-унос, доменный шлак, карбонат кальция, пуццоланы и их смеси.

5. Строительный раствор EIFS по п. 1, где указанным цементом является глиноземный цемент.

6. Строительный раствор EIFS по п. 1, где наполнитель/заполнитель выбирают из группы, включающей кремнистый песок, карбонат кальция и доломит, а также их комбинации.

7. Строительный раствор EIFS по п. 1, где наполнитель/заполнитель включает легкий заполнитель, выбранный из группы, включающей перлиты, полистирольные зерна, полые стеклянные или керамические шарики/шарики из ячеистого стекла, пробку, смолу и их смеси.

8. Строительный раствор EIFS по п. 1, где массовое соотношение метилгидроксиэтилцеллюлоза/гидроксиэтилцеллюлоза в смеси составляет величину в диапазоне от приблизительно 30:70 до приблизительно 70:30.

9. Строительный раствор EIFS по п. 7, где массовое соотношение метилгидроксиэтилцеллюлоза/гидроксиэтилцеллюлоза в смеси составляет величину в диапазоне приблизительно 50:50.

10. Здание с поверхностью, покрытой системой внешнего изоляционного покрытия, включающей теплоизоляционную плиту, покрытую строительным раствором по п. 1.

11. Здание с поверхностью, покрытой системой внешнего изоляционного покрытия, включающей теплоизоляционную плиту, покрытую строительным раствором по п. 2.

12. Здание по п. 10, где указанную теплоизоляционную плиту выбирают из группы, включающей вспененный полистирол, экструдированный полистирол, экструдированный полиэтилен, полиуретан, полиизоцианоурат и минеральную вату.

13. Здание по п. 11, где указанную теплоизоляционную плиту выбирают из группы, включающей вспененный полистирол, экструдированный полистирол, экструдированный полиэтилен, полиуретан, полиизоцианоурат и минеральную вату.

www.findpatent.ru

Эфиры целлюлозы простые применение - Справочник химика 21

    Из простых эфиров целлюлозы наибольшее применение в -технике имеют метил-, этил- и бензилцеллюлозы, применяемые в бумажной, текстильной и лаковой промышленности. Простые эфиры целлюлозы и гликолевой кислоты применяются как моющие и гелеобразующие средства. Среди сложных эфиров целлюлозы важнейшими являются азотнокислые, уксуснокислые эфиры целлюлозы и ксантогенат целлюлозы. [c.720]     Из простых эфиров целлюлозы получили применение в промышленности метилцеллюлоза, этилцеллюлоза и бензилцеллюлоза. [c.146]

    П о о б л а с т я м применения Для масел, жиров, восков нитроцеллюлозы сложных эфиров целлюлозы простых эфиров целлюлозы и каучука [c.453]

    Среди простых эфиров целлюлозы наибольшее применение в технике имеют метил-, этил- и бензилцеллюлозы. Среди сложных эфиров целлюлозы важнейшими являются азотнокислые, уксуснокислые эфиры целлюлозы и ксантогенат целлюлозы. [c.626]

    Каждое элементарное звено целлюлозной цепи содержит три гидроксильные группы, благодаря наличию которых и можно получить простые и сложные эфиры целлюлозы. Наибольшее применение получили азотнокислый эфир целлюлозы (по традиции неправильно называемый нитроцеллюлозой), уксуснокислый эфир целлюлозы (ацетилцеллюлоза), ксантогеновый эфир целлюлозы (омылением его получается вискозное волокно), метилцеллюлоза, этилцеллюлоза и т. д. [c.48]

    Углеводы — один из основных продуктов питания. В то же время они имеют и большое промышленное значение. Такие отрасли промышленности, как химическая, целлюлозно-бумажная, деревообрабатывающая, текстильная, пищевая и многие другие, заняты переработкой углеводсодержащего сырья. Углеводы нашли применение в промышленности строительных материалов. Деревянные дома и мебель — это та же целлюлоза. Отходы целлюлозно-бумажного производства (например, сульфитно-спиртовая барда), продукты химической переработки целлюлозы (простые и сложные эфиры целлюлозы и т. д.) используются В строительном [c.231]

    Как получаются простые и сложные эфиры целлюлозы. Каково их промышленное применение  [c.62]

    Применение в качестве пластификатора полиамидных полимеров для синтеза бензофенона (пластификатор простых и сложных эфиров целлюлозы) для получения некоторых красителей. [c.108]

    Лучше всего изучены химические свойства природных высокомолекулярных соединений (целлюлозы, крахмала, белков), которые были известны за много десятков лет до появления синтетических полимеров. Наибольшее внимание уделялось химическим превращениям целлюлозы, обладающей ценными техническими свойствами и являющейся наиболее широко распространенным природным органическим полимером. Путем химических превращений целлюлозы получают ацетаты целлюлозы, применяемые для производства волокна, лаков, пленок, пластмасс нитраты целлюлозы для производства пластмасс, пленок, лаков и бездымного пороха многочисленные простые эфиры целлюлозы, имеющие весьма разнообразное применение для производства лаков, пленок, электроизоляционных материалов, в качестве отделочных средств в текстильной промышленности, а также присадок при бурении нефтяных скважин. [c.210]

    Поскольку требования, предъявляемые к получаемому волокнистому материалу в зависимости от его применения, весьма различны, условия варки растительного сырья изменяют в широких пределах. Так, для получения химически чистой целлюлозы, применяемой для производства простых и сложных эфиров, целлюлоза должна быть предельно освобождена от гемицеллюлоз и лигнина. [c.340]

    Простые эфиры целлюлозы в настоящее время приобрели большое практическое значение. К достоинствам простых эфиров целлюлозы относятся устойчивость к действию химических реагентов, водостойкость, морозостойкость, светостойкость, термостойкость, малая горючесть, способность растворяться в распространенных органических растворителях, хорошие пленкообразующие и термопластические свойства и др. Некоторые простые эфиры целлюлозы при определенной степени замещения могут растворяться не только в органических растворителях, но и в разбавленных водных растворах щелочи и даже в холодной воде. Это также играет важную роль в их применении. [c.608]

    Свойства простых эфиров целлюлозы, в том числе растворимость, а следовательно и области применения, зависят от характера и размера вводимого в целлюлозу радикала от степени замещения и распределения введенных радикалов от степени полимеризации и полидисперсности. С увеличением размера алкильного радикала уменьшается интенсивность межмолекулярного взаимодействия, понижаются гидрофильность и температура размягчения простых эфиров целлюлозы и прочность изделий из них. [c.612]

    Простые эфиры целлюлозы, содержащие в алкильном заместителе карбоксильные группы, особенно карбоксиметилцеллюлоза, нашли широкое практическое применение. Наличие карбоксильной фуппы обеспечивает хорошую растворимость таких эфиров (в виде натриевых солей) в воде. Карбоксиметилцеллюлозу (КМЦ) и ее натриевую соль из всех простых эфиров целлюлозы выпускают в промышленности в наибольшем количестве. [c.616]

    Важнейшее место среди простых эфиров целлюлозы занимает этилцеллюлоза. Этилцеллюлозу можно получать гомогенным и гетерогенным способами, но промышленное применение в СССР получил лишь гомогенный способ, при котором получаемая этилцеллюлоза растворяется в этилирующей смеси. [c.265]

    РАСТВОРИМОСТЬ И ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ПРОСТЫХ ЭФИРОВ ЦЕЛЛЮЛОЗЫ [c.394]

    Поэтому в химических реакциях целлюлоза ведет себя как полиатомный спирт, образуя алкоголяты, сложные и простые эфиры. Среди сложных эфиров целлюлозы особенно большое значение приобрели ее ксантогенат и ацетат, применяемые в производстве химических волокон и пленок (стр. 450, 462), а также азотнокислые эфиры целлюлозы (нитраты), имеющие самостоятельное применение. [c.432]

    Наиболее часто для алкилирования целлюлозы в лабораторных условиях применяют диметилсульфат (СНз)2304, который имеет телшературу кипения 461 К и позволяет получать продукты при нормальном давлении. Но, несмотря на это, применение его в производстве ограничено из-за высокой токсичности. Образование простого эфира целлюлозы в случае действия диметилсульфата может быть выражено в общем виде следующим уравнением  [c.68]

    Переработка и применение. Хотя по сравнению с др. простыми эфирами целлюлозы М. более устойчива при нагревании на воздухе, ее перерабатывают и применяют в условиях, в к-рых исключены сильные термоокислительные воздействия. М. используют в основ ном в виде водных р-ров, при приготовлении к-рых вначале замачивают М. в небольшом (0,2—0,5 ч. от всего необходимого объема) количестве горячей (80—90 °С) воды, что обеспечивает равномерное смачивание всех частиц. Полученную суспензию выдерживают непродолжительное время, затем добавляют оставшееся количество холодной (О—10 °С) воды. Водным р-рам М. свойственно сильное пенообразование, вследствие чего в ряде случаев необходимо применять пеногасители типа алканолов (С,—С ,,) и эфиров ортофосфорной к-ты. [c.105]

    Ряд П. п. уже нашел промышленное применение. Такие реакции происходят, например, при получении в промышленности простых и сложных эфиров целлюлозы, поливинилового спирта, хлорирование полиэтилена и поливинилхлорида. П. п. широко используются также в практике лабораторных исследований. Так, проведенная в свое время Штаудингером серия П. п. [c.436]

    Различные марки ЭЦ несколько отличаются друг от друга по свойствам, главным образом в зависимости от степени этилирования. Чем выше степень этилирования (этоксильное число), тем больше растворимость ЭЦ в органических растворителях, ниже температура размягчения, больше пластичность эфира (только до степени замещения 2,5) и больше водостойкость материала. Как простой эфир ЭЦ отличается большей химической стойкостью, чем сложные эфиры целлюлозы,—она не омыляется кислотами и щелочами и отличается исключительной щелочестойкостью, ЭЦ обладает низким удельным весом, меньшим, чем все прочие эфиры целлюлозы, и большей морозостойкостью, хорошей адгезией (прилипаемостью) к поверхностям металлов, дерева и тканей. Хорошая пластичность допускает формование из нее изделий с применением малых количеств пластификаторов, которые для формования пластиков из нитроцеллюлозы и ацетилцеллюлозы необходимы в значительно больших количествах. [c.75]

    Крахмал и целлюлоза содержат в молекулах гидроксильные группы, поэтому они проявляют свойства спиртов образуют простые и сложные эфиры. Уксуснокислые и азотнокислые эфиры целлюлозы имеют большое техническое применение. Реакция между целлюлозой и азотной кислотой протекает по схеме [c.219]

    В тридцатых годах XX в. на основе поливинилхлорида были разработаны материалы типа пластиката, которые нашли широкое применение в качестве кабельной изоляции, для изготовления плащей, летней обуви, дамских сумок и других галантерейных изделий, а позднее — жесткий пластик винипласт. В эти же годы были синтезированы органические стекла (полиакрилаты) и получены простые эфиры целлюлозы, из которых наибольшее промышленное значение получили метил-, этил- и карбоксиметилцеллюлоза. [c.10]

    Нашли техническое применение и простые эфиры целлюлозы. Так, обрабатывая целлюлозу сначала щелочью, а затем хлористым метилом (под давлением), получают метилцеллюлозу  [c.391]

    Из простых эфиров целлюлозы наибольшее применение получили метил-, этил- и бутилцеллюлоза. Они получаются при действии алкилсульфатов или галогеналкилов на щелочную целлюлозу  [c.251]

    Проведены исследования реологических свойств растворов простых эфиров целлюлозы [63, П8, 207, 223]. Реологические, пленкообразующие и адгезионные свойства имеют важное значение для практического применения простых эфиров целлюлозы. Простые эфиры используют в качестве эмульгаторов, диспергаторов, ста билизаторов в косметической, фармацевтической, пищевой, химической промышленности, в производстве пластмасс, в качестве материалов при изготовлении бумаги и текстильных изделий, в производстве цемента и бетона, в качестве загустителей типографских красок и лаков, для изготовления клеев, в частности для обоев и клеевых красок, в качестве защитных покрытий и пленок [8, 9]. Другие типы простых эфиров, которые хорошо набухают, но не растворяются в воде, применяют при получении гигиенических бумаги и тканей и для добавки к почвам. Эти продукты получают с помощью реакций сшивания цепей при обработке формальдегидом, гидроксиметилкарбамидом, эпихлоргидрином, хелатами металлов и т. д. [96, П5, 229]. [c.395]

    Из простых эфиров целлюлозы наибольшее промышленное применение получили метиловые, бензиловые (для производства лаковых покрытий) и карбоксиэтиловые эфиры целлюлозы. Простые эфиры целлюлозы получаются при действии соответствующего галоидалкила или галоидалкиларила на целлюлозу в щелочной среде. [c.425]

    Из простых эфиров целлюлозы получила применение в лакокрасочной промышленности низковязкая этилцеллюлоза марки ЛК, содержащая 47—49% этоксильных групп (—О—С2Н5). На ее основе осуществлен выпуск этилцеллюлозных лаков ЭЦ-959 и ЭЦ-9101 для лакирования соответственно низковольтных и монтажных проводов, белой эмали ЭЦ-594 для покрытия ткани, предварительно загрунтованной этилцеллюлозным ла- [c.122]

    Для произ-ва Ц. э. используют облагороженную хлопкотто и древесную (сульфатную и сульфитную) целлюлозу. Выбор ее вида определяется областью применения того или иного эфира. Для повышения скорости и равномерности О-алкилирования и однородности Ц. э. независимо от способа их получения исходную целлюлозу обязательно предварительно активир5П0т. В произ-ве простых эфиров целлюлозу обрабатывают р-ром NaOH, в результате чего она набухает и приобретает повышенную реакционную способность (щелочная целлюлоза) вследствие облегчения диффузии компонентов этерифицирующей смеси внутрь материала. В произ-ве сложных эфиров целлюлозу обрабатывают уксусной или др. к-той при повышенной т-ре в парах либо р-рами этих к-т. Обычно, чем выше т-ра активации, тем меньше ее продолжительность. [c.338]

    Из других простых эфиров этиленгликоля необходимо упомянуть монометиловый эфир СН3ОСН2СН2ОН ( метилцеллосольв , темп. кип. 124°, уд. вес =0,975) и моноэтиловый эфир С2Н5ОСН2СН2ОН ( целлосольв , темп. кип. 135°, уд. вес =0,936). Эти растворители обладают очень высокой растворяющей способностью, особенно по отношению к высокомолекулярным кислородсодержащим органическим соединениям, например к эфирам целлюлозы, и смешиваются с водой во всех отношениях. Наибольшее применение они имеют в химии целлюлозы и ее производных. [c.22]

    Для получения оболочек капсул применяют пленкообразующие высокомолекулярные вещества, способные давать эластичные пленки, характеризующиеся определенной механической прочностью. Такими материалами могут являться казеин, зеин, простые и сложные эфиры целлюлозы и некоторые синтетические полимеры (например, сополимер метакриламида и метакриловой кислоты и др.) [28]. Однако широкого практического применения для фармацевтических капсул эти вещества не нашли, и поэтому до настоящего времени фармацевтическая промышленность пользуется преимущественно желатиновыми капсулами. [c.453]

    Оксиэтилированные эфиры целлюлозы совместимы с электролитами. Эти эфиры находят все более широкое применение в составе зубных паст, это позволяет снизить содержание в них мела. МЕТИЛЦЕЛЛЮЛОЗА (МЦ) в зубных пастах находит более ограниченное применение. Это простой метиловый эфир целлюлозы. Его получают при взаимодействии щелочной целлюлозы с хлористым метилом. Характерной особенностью этого эфира является способность образовывать коллоидные растворы только в холодной воде. При повышении температуры воды метилцеллюлоза коагулирует. Вязкость растворов МЦ увеличивается в зависимости от степени этерификации. Наибольшую вязкость имеют растворы МЦ со степенью этерификации 100. Метиловый эфир целлюлозы может быть использован только при получении зубных паст, не содержащих глицерин. При их приготовлении необходимо строго контролировать температуру, так как при температуре выше 40° С однородность структуры пасты нарушается. Срок хранения таких паст не более 6 месяцев из-за малой гигроскопичности МЦ. В составе отечественных паст не применяется, АЛЬГИНАТ НАТРИЯ выделяют из бурых водорослей семейства ламинария. Хорошо совместим с основными компонентами зубных паст. В воде растворяется очень легко, а при определенных концентрациях дает вязкие структурированные растворы. В присутствии свободных ионов кальция переходит в альгинат кальция, вызывающий затвердевание зубных паст. Для предотвращения этого процесса в пасты вводят специальные комплексообразующие вещества — сукцинат натрия, триполифос-фат и др. В составе отечественных зубных паст не применяется. [c.148]

    Основная область применения Э. п.— производство. кино- и фотоматериалов, а также магнитной ленты. Эти пленки используют, кроме того, как упаковочный материал для пищевых продуктов, косметики и лекарственных товаров, в качестве изоляции в электротехнич. и электронной пром-сти. Металлизированные Э. п. применяют для изготовления украшений, канцелярских товаров и конденсаторов. В сельском хозяйстве Э. п. служат для укрытия парников и теплиц, а пленка на основе водорастворимых простых эфиров целлюлозы применяется как упаковочный материал и для капсулирова-ния семян перед внесением их в грунт, что облегчает культивацию и улучшает созревание сельскохозяйственных культур. Э. п. (гл. обр. этилцеллюлозные) м. б. использованы как мембраны для диффузионного разделения газовых смесей. [c.518]

    Арилдисульфонамидо - формальдегидные смолы имеют различную консистенцию, твердость, цвет, температуру плавления в зависимости от рода взятого катализатора и условий реакции и получения — температуры, времени конденсации и т. д. Они обладают хорошей клеящей способностью, достаточной стойкостью к действию воды п хорошо совмещаются с простыми и сложными эфирами целлюлозы. Они нашли применение для изготовления клеящих веществ и пластмасс. Они смешиваются с наполнителем — древесной мукой или волокнистыми наполнителями — и прессуются в условиях, применяемых для феноло-формальдегидных смол. Арилдисульфонамидо-формальдегидные смолы совмещаются с эфирами целлюлозы или другими искусственными и натуральными смолами (глифталями, канифолью и т. д.). Получаемые таким путем композиции смешиваются с наполнителями и прессуются. Эти смолы, кроме того, находят применение для получения покровных лаков, обычно в смеси с эфирами целлюлозы. [c.280]

chem21.info

Эфиры целлюлозы простые метилцеллюлоза - Справочник химика 21

    Метилцеллюлоза. Простой метиловый эфир целлюлозы (R = СНз). Белые или желтоватые волокнистые хлопья без запаха и вкуса. Слабо гигроскопична. Устойчива к различным химическим реагентам. Растворяется в холодной воде. pH водного раствора 7 = 1,336 (2% раствор). Водные растворы прозрачны и вязки, при нагревании выше 50 °С коагулируют, но при охлаждении вновь переходят в раствор. В пищевой промышленности — загуститель соков, стабилизатор мороженого и др. [c.48]     Простые эфиры целлюлозы — метиловые (метилцеллюлоз и этиловые (этилцеллюлоза) — применяют при изготовлен мороженого, в производстве кондитерских изделий, соусов. [c.78]

    Таким образом, растворимость в неполярных жидкостях характерна не только для простых эфиров целлюлозы (бензилцеллюлоза, метилцеллюлоза), но и для сложных эфиров (ацетилцеллюлоза). [c.233]

    Метилцеллюлоза — простой эфир целлюлозы и метилового спирта — представляет собой белый аморфный порошок или волокнистый материал. [c.267]

    Метилцеллюлоза является первым членом гомологического ряда 0-алкильных производных целлюлозы (простых эфиров). [c.66]

    Из простых эфиров целлюлозы получили применение в промышленности метилцеллюлоза, этилцеллюлоза и бензилцеллюлоза. [c.146]

    Метилцеллюлоза (МЦ) — простой эфир целлюлозы, получающийся при замещении гидроксилов целлюлозы радикалом метилового спирта — метоксилом ОСНз [c.298]

    Нашли техническое применение и простые эфиры целлюлозы. Так, обрабатывая целлюлозу сначала щелочью, а затем хлористым метилом (под давлением), получают метилцеллюлозу  [c.391]

    В клеях могут применяться растворимые в воде простые эфиры целлюлозы метилцеллюлоза (МЦ), оксиэтилцеллюлоза (ОЭЦ), карбокси-метилцеллюлоза (КМЦ). Свойства простых эфиров целлюлозы определяются степенью замещения гидроксильных групп. Физико-химические [c.22]

    Каждое элементарное звено целлюлозной цепи содержит три гидроксильные группы, благодаря наличию которых и можно получить простые и сложные эфиры целлюлозы. Наибольшее применение получили азотнокислый эфир целлюлозы (по традиции неправильно называемый нитроцеллюлозой), уксуснокислый эфир целлюлозы (ацетилцеллюлоза), ксантогеновый эфир целлюлозы (омылением его получается вискозное волокно), метилцеллюлоза, этилцеллюлоза и т. д. [c.48]

    Простые эфиры целлюлозы отличаются высокой химической стойкостью и высокой растворимостью. Способность растворяться в тех или иных растворителях зависит от вида эфира и степени замещения. Так, метилцеллюлоза, содержащая более 1,3 метоксильных групп на элементарное звено (степень замещения 1,3), растворима в воде, а при степени замещения около 3 она становится растворимой также и в органических растворителях — бензоле, хлороформе и др. Простые эфиры целлюлозы способны образовывать вязкие растворы, обладающие поверхностно-активными, клеящими, стабилизирующими и другими свойствами. Этими свойствами обусловлено применение простых эфиров целлюлозы как для производства пластмасс (этилцеллюлозы), так и в качестве полноценных заменителей природных водорастворимых полимеров — крахмала, желатины, агар-ага-ра и др. [c.50]

    Простые эфиры целлюлозы используются для производства лаков и эмалей, которые обладают большей механической и химической стойкостью, чем нитроцеллюлозные лаки. Метилцеллюлоза применяется в строительстве в качестве клея для малярных работ, шпаклевки стен и клейстера для наклейки обоев. Жидкий метил-целлюлозный клей — более стойкий связующий материал по сравнению с известью и цементом для неярких красок, используемых при покраске стен. Добавляя в этот клей жидкую бумажную макулатуру, можно получать покрытия с шероховатой поверхностью, обладающие высокой прочностью к ударам и истиранию. Смесь густого метилцеллюлозного клея с мелкорастертым мелом применяется для пластических покрытий стен. Иногда к ней примешивают белый цемент, который играет роль дополнительного связующего материала. Полученный продукт служит для прочной рельефной отделки стен и потолков. Метиловые эфиры целлюлозы используются и в керамическом производстве в качестве связующих и пластифицирующих веществ для повышения устойчивости сырьевой массы к усадке. Бутилцеллюлозу употребляют в производстве электроизоляционных лаков, обоев, для пропитки тканей, водо- и жиронепроницаемой бумаги. Обладая хорошими поверхностноактивными свойствами, эти эфиры применяются в качестве добавок в строительные растворы и бетоны, а также как загустители, повышающие вязкость эмульсий и эмульсионных красок. [c.238]

    Реакцией О-алкилирования диалкилсульфатами могут быть получены только метилцеллюлоза и этилцеллюлоза, причем диэтил-сульфат менее реакционноспособен, чем диметилсульфат. Высшие алкилсульфаты для получения простых эфиров целлюлозы не применяются. [c.371]

    Мы уже рассматривали свойства и применение уксуснокислого эфира целлюлозы (стр. 83) и ксантогенового эфира (стр. 71). Все более начинают входить в употребление простые эфиры целлюлозы— метилцеллюлоза, этилцеллюлоза, бензилцеллюлоза и другие, которые благодаря устойчивости к действию химических реагентов, малой горючести, водостойкости, светостойкости, морозостойкости, сравнительно высокой термостабильности и растворимости в доступных растворителях являются ценными веществами в производстве лаков, электроизолирующих материалов и пленок . [c.88]

    Кроме коллоксилина для изготовления лаков и эмалей применяют простые эфиры целлюлозы —этилцеллюлозу, ацетобутират целлюлозы, метилцеллюлозу, оксиэтилцеллюлозу и др. Для них обычно определяют степень замещения (этоксильное число). [c.266]

    Как видно из рисунка, кривая набухания имеет первый максимум в области 18—25%-ной концентрации щелочи. Именно этой концентрации щелочь используется при синтезе большинства простых эфиров целлюлозы. Однако в синтезе этил- и метилцеллюлозы присутствие большого количества воды в щелочной целлюлозе, полученной при обработке щелочью такой [c.94]

    Из простых эфиров целлюлозы метилцеллюлоза наиболее стойка к термоокислительной деструкции. Она более устойчива к. действию микроорганизмов, чем природные водорастворимые полимеры. Пленки из метилцеллюлозы стойки к ультрафиолетовому излучению, к действию любых масел и большинства органических растворителей. [c.404]

    Более широкое распространение имеют натриевые и калиевые соли некоторых сложных эфиров целлюлозы [180, 182, 188, 209, 265, 272] и особенно простых эфиров целлюлозы, например метилцеллюлозы, карбоксиметилцеллюлозы и оксиэтилцеллю-лозы [58, 77, 106, 169, 233]. Иногда антистатическое действие их еще усиливают добавкой неорганических солей. [c.113]

    Простые эфиры целлюлозы, например метилцеллюлозу, обычно получают реакцией натрийцеллюлозы с хлористым метилом. Некоторые простые эфиры образуются при взаимодействии окиси этилена с натрийцеллюлозой, причем получается гидроксиэтиловый эфир. [c.239]

    Простые эфиры целлюлозы обычно получают действием алки-лирующих агентов на щелочную целлюлозу или целлюлозу в присутствии концентрированных растворов едкого натра. В присутствии едкого натра происходит значительное набухание целлюлозы, облегчающее диффузию алкилирующего реагента внутрь волокна, и тем самым ускоряется образование эфира целлюлозы. Простые эфиры целлюлозы (особенно метиловый, а также тритиловый эфир) могут быть получены в присутствии органических оснований, в частности четвертичных аммониевых оснований или пиридина. Этил- и метилцеллюлоза образуются также при действии алкилгалогенидов на триалкоголят целлюлозы, суспендированный в жидком аммиаке в частности, при действии бромистого метила образуется- метилцеллюлоза высокой степени замещения. Концентрация щелочи, применяемой при 0-алкилировании, оказывает значительное влияние на степень замещения эфира целлюлозы и расход алкилирующего реагента, так как в щелочной среде наряду с реакцией О-алкилирования протекают побочные реакции омыления алкилсульфатов и алкилгалогенидов, гидратации эпоксидов и иминов, а также непредельных соединений. [c.372]

    Большие количества хлористого метила потребляют для производства метилцеллюлозы путем этерификации алкалицеллюлозы. В результате этерификации целлюлоза становится водорастворимой и приобретает способность сильно набухать. Простой метиловый эфир целлюлозы, выпускавшийся в Германии под названием тилоза, применяется в качестве загустителя, клеящего вещества и т. д. При взаимодействии алкалицеллюлозы с хлористым метилом в автоклавах около 75% хлористого метила теряется в виде метанола и диметилового эфира. Хлористый метил применяется так же, как разбрызгиватель при распыливании ядохимикатов. [c.209]

    Техническое значение имеют термопластичные материалы на основе сложных эфиров (ацетаты, ацетобутираты, нитраты и ксантогенаты) и простых эфиров целлюлозы (этилцеллюлоза, бензилцеллю-лоза и водорастворимые производные — метилцеллюлоза и карбоксиметилцеллюлоза). [c.97]

    Простые эфиры целлюлозы используются для производства лаков и эмалей, которые обладают большей механической и химической стойкостью, чем нитроцеллролозные лаки. Метилцеллюлоза применяется в строительстве в качестве клея для малярных работ, шпаклевки стен и клейстера для наклейки обоев. Жидкий метил- [c.251]

    Хорошие результаты достигаются при использовании в качестве клея водно-спиртовых растворов простых эфиров целлюлозы метилцеллюлозы, этилцеллюлозы, оксизтилцеллюлозы. Натриевая соль карбоксиметилцеллюлозы для этих целей не может быть рекомендована, так как высокая щелочность ее растворов может оказать отрицательное влияние на некоторые пигменты. [c.55]

    Для укрепления льняных и хлопковых тканей применяют простые и сложные эфиры целлюлозы. Растворы в воде (или в смеси эттшовый спирт - вода) метилцеллюлозы, оксизтилцеллюлозы, гликолевых эфиров целлюлозы обеспечивают хорошее укрепление волокон ткани, могут служить клеями при дублировании. После высыхания эти препараты образуют матовую поверхность и не искажают цвет тканей. [c.232]

    Наибольшее практическое значение среди простых эфиров целлюлозы имеет этилцеллюлозаусо степенью замещения 2,4—2,5. Этот эфир трудно воспламеняется, хорошо формуется, изделия нз него имеют высокую прочность на удар, сохраняя гибкость и упругость до —40°С. Водорастворимая метилцеллюлоза используется в качестве загустителя для пищевых продуктов, а также как эмульгатор и клей. [c.343]

    Простые эфиры целлюлозы — метилцеллюлоза Е = СН и натркй-карбоксиметилцеллюлоза К = СН,СООКа — образуют вязкие водные растворы или гели и применяются в фармации в качестве загустителей, эмульгаторов и стабилизаторов мазей и эмульсий. Карбоксиме-тилцеллюлоза К = СН,СООН и диэтиламиноэтилцеллюлоза (сокращенно ДЭАЭ-целлюлоза) К = СН,СН,К(С,Н ), обладают способностью связывать ионы и используются в биохимических исследованиях как иониты. [c.404]

    Эфиры целлюлозы подразделяются на простые и сложные К простым эфирам целлюлозы относятся этилцеллюлоза, бен-зилцеллюлоза, метилцеллюлоза и карбоксиметилцеллюлоза К сложным эфирам целлюлозы относятся нитрат и ацетат целлюлозы и смешанные эфиры — ацетобутират и ацетопропионат целлюлозы [c.207]

    Простые эфиры целлюлозы. Метилцеллюлоз а, содержащая в среднем 1,5 метильные группы на один остаток СвНюО,, получается обработкой древесной щелочной целлюлозы хлористым метилом в закрытых сосудах под давлением (обычно в присутствии небольшого количества окиси этилена, благодаря которой вводятся оксиэтильные группы— Hj HjOH). Этот продукт растворим в холодной воде и осаждается при нагревании раствора. Он применяется под названием тилозы как аппретура в текстильной промышленности. [c.306]

    Оксиэтилированные эфиры целлюлозы совместимы с электролитами. Эти эфиры находят все более широкое применение в составе зубных паст, это позволяет снизить содержание в них мела. МЕТИЛЦЕЛЛЮЛОЗА (МЦ) в зубных пастах находит более ограниченное применение. Это простой метиловый эфир целлюлозы. Его получают при взаимодействии щелочной целлюлозы с хлористым метилом. Характерной особенностью этого эфира является способность образовывать коллоидные растворы только в холодной воде. При повышении температуры воды метилцеллюлоза коагулирует. Вязкость растворов МЦ увеличивается в зависимости от степени этерификации. Наибольшую вязкость имеют растворы МЦ со степенью этерификации 100. Метиловый эфир целлюлозы может быть использован только при получении зубных паст, не содержащих глицерин. При их приготовлении необходимо строго контролировать температуру, так как при температуре выше 40° С однородность структуры пасты нарушается. Срок хранения таких паст не более 6 месяцев из-за малой гигроскопичности МЦ. В составе отечественных паст не применяется, АЛЬГИНАТ НАТРИЯ выделяют из бурых водорослей семейства ламинария. Хорошо совместим с основными компонентами зубных паст. В воде растворяется очень легко, а при определенных концентрациях дает вязкие структурированные растворы. В присутствии свободных ионов кальция переходит в альгинат кальция, вызывающий затвердевание зубных паст. Для предотвращения этого процесса в пасты вводят специальные комплексообразующие вещества — сукцинат натрия, триполифос-фат и др. В составе отечественных зубных паст не применяется. [c.148]

    Простые эфиры целлюлозы представляют собой производные целлюлозы, в которых гидроксильные группы замещены (обычно частично) спиртовыми радикалами. Так, замещение гидроксилов этоксильными группами С2Н5О дает этилцеллюлозу, метоксильными СН3О — метилцеллюлозу и т. д. [c.328]

    Простые эфиры целлюлозы. Обычно имеют светлую окраску по = 1,47 плотность 1,10—1,25 г/см . Растворимость этилцел-люлозы тем лучше, чем больше содержание этоксильных групп. Метилцеллюлоза растворима в горячей воде и нерастворима в большинстве прочих растворителей. Проба IV дает запах жженой бумаги (с примесью запаха бензальдегида для бензилцел-люлозы). Проба XIV — слабо положительная. [c.66]

    Монокарбоксилцеллюлоза более гигроскопична, чем исходная целлюлоза, что объясняется введением новых функциональных групп и разрыхлением структуры целлюлозы при окислении Предварительное разрыхление структуры целлюлозы путем получения низкозамешенных простых эфиров целлюлозы — аминоэтил-, карбоксиметил-, цианэтил-, оксиэтил-, метилцеллюлозы (см. гл. 7) приводит к увеличению скорости растворения продуктов окисления этих эфиров двуокисью азота в разбавленных растворах NaOH по сравнению с препаратом монокарбоксилцеллюлозы с таким же содержанием СООН-групп. [c.212]

    Смешанный простой-сложный эфир целлюлозы — хлорфенил-карбамат метилцеллюлозы — был синтезирован при обработке метилцеллюлозы га-хлорфенилизоцианатом [c.387]

    Так, только в Советском Союзе за последние годы коренным образом изменилась технология синтеза ацетатов целлюлозы, освоено промышленное производство метилцеллюлозы, карбокси-метилцеллюлозы, выпускаются в полупромышленном масштабе оксиалкиловые производные и смешанные простые и сложные эфиры целлюлозы. [c.3]

    В качестве нсходного сырья для производства простых эфиров целлюлозы используют хлопковую и древесную целлюлозу, едкий аатр и соответствующий алкилирующий рейгент. Так, для получения этилцеллюлозы в качестве алкили-рующего реагента употребляют хлористый этил, карбоксиметилцеллюлозы — монохлор уксусную кислоту или ее натриевую соль, метилцеллюлозы — хлористый метил, оксиэтилцеллюлозы — окись этилена. [c.390]

    Значительное применение в народном хозяйстве находят водорастворимые простые эфиры целлюлозы карбоксиметилцеллюлоза и метилцеллюлоза. Растворы этих производных целлюлозы обладают большой связывающей, эмульгирующей и адгезионной способностями. Водорастворимые простые эфиры целлюлозы находят широрое [c.327]

chem21.info

Эфиры целлюлозы | ДП СТРОЙ

Компания ООО «ДП-Строй» является поставщиком различных химических компонентов.

Наша продукция:

— эфиры целлюлозы, которые являются основными модифицирующими добавками практически во всех видах сухих строительных смесей благодаря своей способности удерживать воду в массе раствора, в частности, замедлять быстрый переход воды во впитывающее основание. Введение в строительные смеси эфиров целлюлозы позволяет улучшить их консистенцию, удобоукладываемость и стабильность, достичь равномерного схватывания. Улучшить адгезионные свойства раствора. Увеличить открытое время, при сохранении пластичной консистенции. Достичь высокой прочности раствора;

— гидроксиэтилцелллоза  — это белый  порошок, который легко диспергируются и растворяются в холодной или горячей воде, образуя растворы различной вязкости, обладает отличными свойствами водоудержания. Его  используют в качестве модификатора вязкости и реологической добавки при производстве сухих строительных смесей и ЛКМ, также применяется в качестве загустителя при производстве готовых к применению дисперсионных плиточных адгезивов, штукатурок и шпатлевок;

— эфиры крахмала – это химически модифицированные крахмалы, специально разработанные для использования в производстве сухих строительных смесей. Они оказывают влияние на консистенцию строительного раствора, улучшая технологичность составов и их устойчивость к сползанию. Эфиры крахмала применяются вместе с эфирами целлюлозы;

— сухие пленочные биоциды используются при производстве сухих строительных смесей для защиты поверхности от развития грибка и водорослей;

— воздухововлекающие и диспергирующие добавки — это поверхностно-активные вещества воздухововлекающего действия. Они были разработаны специально для использования в производстве строительных материалов, особенно в сухих штукатурных смесях на основе гипса, цемента и извести. Это порошки белого цвета различной химической природы, растворимые воде. Данные продукты уменьшают поверхностное натяжение воды строительных растворов, что способствует диспергированию. Кроме того, происходит вовлечение маленьких устойчивых пузырьков воздуха, что улучшает технологичность смеси, увеличивает её выход, сокращает количество трещин;

— модификаторы схватывания и твердения — это порошкообразный замедлитель схватывания, специально разработанный для использования в рецептурах строительных смесей;

— пеногасители  представляет собой измельченную противопенную добавку для использования в производстве строительных материалов. Они уменьшают нежелательное образование воздушных пузырьков во время изготовления и применения этих материалов на основе гидравлических вяжущих материалов;

— редиспергируемые полимерные порошки (РПП) получают путем распылительной сушки водных дисперсий полимеров (латексов). При затворении водой сухой строительной смеси, содержащей РПП, крупинки порошка вновь диспергируются, образуя мельчайшие полимерные частицы. Способность латексных порошков возвращаться в первоначальное диспергированное состояние позволяет создавать готовые к смешению сухие строительные смеси высокого качества. Использование РПП в составах строительных смесей значтельно улучшает их технологичность и эксплуатационные характеристики.

dp-stroi.ru

Эфиры целлюлозы водорастворимые - Справочник химика 21

    Кроме снижения величины набухания водорастворимые эфиры целлюлозы вызывают рост периода и снижение средней скорости набухания. Причем, с ростом концентрации до 2,0% эти показатели продолжают активно изменяться. Так, при 0,5% КМЦ (различных марок) скорость набухания глин примерно в 2 раза меньше, чем в воде, а при 1,0%-пой концентрации — почти в 3 раза [32]. С ростом степени полимеризации препаратов КМЦ от 350 до 600 количественные величины показателя набухания глин уменьшаются. Действие КМЦ на показатели набухания глин, видимо, можно объяснить следуюш им образом. Размер и строение агрегатов КМЦ, адсорбирующихся на глинистых частицах, способствуют образованию защитного адсорбционного слоя, препятствующего пептизации их до элементарных частиц под действием дисперсионной среды. Это обусловливает сдерживание роста удельной поверхности глин настолько, что, хотя толщина адсорбционного слоя КМЦ значительно выше гидратного, величина набухания не гидратированных ранее глин остается ниже набухания в воде [20]. Это подтверждается действием растворов КМЦ на полностью гидратированные глины. В этом случае набухание возрастает при концентрации КМЦ до 0,5—0,6%. [c.46]     Полимерцементы — искусственно приготовленные материалы, для которых в качестве вяжущего служит бетон или гипс с добавлением полимеров или водных суспензий натуральных или синтетических латексов. В качестве полимерного связующего чаще всего используются поливинилацетатная дисперсия, водорастворимые эпоксидные, полиэфирные, фенолоформальдегидные, фурановые или карбамидные полимеры, эфиры целлюлозы и др. Добавление полимеров к минеральным вяжущим повыщает их физические и физико-химические свойства. Так, вяжущие, затворенные суспензией латекса (латекс-цементы), обладают свойствами как цементов, так и полимеров. Эти свойства во многом зависят от выбора полимерных добавок и их количеств. [c.431]

    ВОДОРАСТВОРИМЫЕ ЭФИРЫ ЦЕЛЛЮЛОЗЫ [c.112]

    Шлихта должна легко смываться водой или слабым раствором щелочи. Поскольку клеющей способностью обладают главным образом высокомолекулярные вещества, для шлихтования используются в первую очередь белковые вещества (желатина), водорастворимые эфиры целлюлозы, водорастворимый крахмал, поливиниловый спирт, полиакриловая кислота, полиакриламид. [c.273]

    Водорастворимые эфиры целлюлозы различных марок обусловливают меньшее набухание глинистых пород, чем вода. Наибольшее снижение набухания имеет место при концентрациях [c.45]

    При этерификации щелочной целлюлозы монохлоруксусной кислотой (или ее натриевой солью) получается водорастворимый эфир целлюлозы — карбоксиметилцеллюлоза (КМЦ)  [c.253]

    Таким образом, водорастворимые эфиры целлюлозы без специальных добавок не оказывают крепящего действия на глинистые породы, хотя и снижают величину и скор Ость их набухания. [c.47]

    Из применяемых до последнего времени в бурении химических реагентов лишь некоторые марки водорастворимых эфиров целлюлозы отвечают указанным требованиям. [c.173]

    В сухом способе используют вязкие обрабатывающие растворы. Они имеют тот же состав, что и растворы в мокром способе, но содержат еще загустители — обычно водорастворимые эфиры целлюлозы. Вязкие обрабатывающие растворы заключают в полимерные микрокапсулы, которые включают в состав фотоматериала. После экспонирования фотоматериал пропускают между валиками, капсулы разрушаются и раствор из них распределяется между светочувствительным и приемным слоями. При извлечении из фотоаппарата приемный материал отделяют от светочувствительного и наносят на него быстровысыхающий стабилизирующий состав, образующий защитное глянцевое покрытие. [c.188]

    Применяют главным образом водорастворимые эфиры целлюлозы. Их свойства определяются степенью замещения гидроксильных групп х и степенью полимеризации макромолекул и, которая изменяется в широких пределах. [c.22]

    Водорастворимые эфиры целлюлозы применяют преимущественно в реставрации бумажных материалов, тканей, живописи в виде клеев и укрепляющих проклеек. [c.22]

    Основными полимерами, применяемыми при строительстве и освоении скважин, являются полимеры акрилового ряда, полимеры водорастворимых эфиров целлюлозы, полимеры этиленоксида, биополимеры. [c.45]

    Поверхностно-активные коллоиды могут быть двух типов. К ним относятся природные растительные коллоиды, сульфит-спиртовая барда, крахмал и его производные, щелочные вытяжки из торфа, бурого угля и др. Эффективными синтетическими соединениями такого типа являются производные водорастворимых и щелочерастворимых эфиров целлюлозы. Это прежде всего КМЦ (карбокси-метилцеллюлоза). [c.77]

    Водорастворимые эфиры целлюлозы [c.105]

    Большие количества хлористого метила потребляют для производства метилцеллюлозы путем этерификации алкалицеллюлозы. В результате этерификации целлюлоза становится водорастворимой и приобретает способность сильно набухать. Простой метиловый эфир целлюлозы, выпускавшийся в Германии под названием тилоза, применяется в качестве загустителя, клеящего вещества и т. д. При взаимодействии алкалицеллюлозы с хлористым метилом в автоклавах около 75% хлористого метила теряется в виде метанола и диметилового эфира. Хлористый метил применяется так же, как разбрызгиватель при распыливании ядохимикатов. [c.209]

    Техническое значение имеют термопластичные материалы на основе сложных эфиров (ацетаты, ацетобутираты, нитраты и ксантогенаты) и простых эфиров целлюлозы (этилцеллюлоза, бензилцеллю-лоза и водорастворимые производные — метилцеллюлоза и карбоксиметилцеллюлоза). [c.97]

    Структурно-механический фактор оценивается с помощью реологических параметров межфазных адсорбционных слоев, которые имеют свойства твердообразного тела. Такие слон обладают механической прочностью, упругими свойствами и прп сближении частиц мешают их слипанию или слиянию. Высокие прочностные характеристики поверхностных слоев приобретаются благодаря переплетению цепей ВМС и длннноцепочечных ПАВ, а иногда и в результате процессов полимеризации и поликонденсацни. Представление о структурно-механическом факторе стабилизации было введено П. А. Ребиндером. Он показал, что этот фактор имеет кинетический характер. Часто после разрушения пленка самопроизвольно не восстанавливается, так как не находится в равновесии со средой. В качестве примера веществ-стабилизаторов, образующих на поверхности частиц гелеобразные пленки, можно привести желатину и некоторые другие белки, мыла, водорастворимые эфиры целлюлозы, смолы. [c.340]

    Нестабилизиро1 анные суспензии, полученные из большинства глинистых пород, теряют агрегативную устойчивость под действием электролитов, концентрации которых превышают порог коагулйции. Происходит разделение фаз с выпадением частиц глинистых пород в осадок и образованием отстоя прозрачного раствора. Чтобы предотвратить это явлен не, обычно применяют реагенты-стабилизаторы (водорастворимые эфиры целлюлозы, крахмал, акриловые полимеры, лигносульфонаты и др.). [c.7]

    Аналогично на набухание глин действуют и другие водорастворимые эфиры цел.1юлозы, в частности, СЭЦ и карбофен. С ростом концентрации водорастворимых эфиров целлюлозы величина ДУ, хотя и уменьшается, но и при концентрации 2,0% остается большей 10%. Величина глинистых паст (бентонита, каолина, гидрослюд, палыгорскита, аргиллита) с ростом концентрации водорастворимых эфиров целлюлозы значительно уменьшается [32, 491. [c.47]

    Хитин нерастворим в воде, органических растворителях, реактиве Швейцера и весьма стоек к щелочам. При кислотном гидролизе он расщепляется с образованием глюкозамина. Фермент хитаза разлагает хитин и образует Л -ацетилглюкозамин. Сравнительная устойчивость хитина делает перспективной модифицирование его для получения защитных реагентов. С этой целью Р. Джонсоном были предложены водорастворимые эфиры хитина — аналоги соответствующих эфиров целлюлозы хитинсульфат, карбоксиметилхитин, карбоксиэтилхитин. Испытания этих продуктов при стабилизации соленых буровых растворов оказались обнадеживающими. Тем не менее, оценивая реагенты, полученные из структурных углеводов типа пектина, лихенина или хитина, необходимо отметить, что все они, как правило, не имеют преимуществ перед реагентами на основе эфиров целлюлозы или крахмала и по эффективности значительно им уступают. [c.188]

    Для повышения Р , и снижения ДУ систем глина — жидкость при применении промывочных жидкостей, стабилизированных водорастворимыми эфирами целлюлозы (КМ1Д различных марок, [c.47]

    Лигносульфонатные реагенты (ССБ, КССБ, различных марок, НССБ) так же, как и водорастворимые эфиры целлюлозы, во всем интервале концентрации обусловливают снижение набухания ранее негидратированных глин и вызывают рост набухания, хотя и менее значительный, гидратированных глин. В отличие от водорастворимых эфиров целлюлозы, добавки лигносульфонатных реагентов в меньшей мере влияют на среднюю скорость набухания [c.48]

    В Советском Союзе научные основы производства и применения водорастворимых эфиров целлюлозы в народном хозяйстве разрабатываются в проблемной лаборатории синтеза водорастворимых эфиров целлюлозы кафедры аналитической химии МИНХиГП и И. М. Губкина (К. Ф. Жигач, И. М. Тимохин, М. 3. Фиыкельштейн, Е. М- Могилевский, В. Д. Городнов, Б. Н. Тесленко и др.). [c.113]

    В последние годы (1967—1975 гг.) в (таврополье, Узбекистане II других районах испытаны юш прохо лят испытания термо-и солеустойчивые рецептуры буровых раств( ров, стабилизированных КМЦ с антиоксидантами, в качестве которых применяют еЬЭС (фенолы эстонских сланцев) или новым я реагентами — водорастворимыми эфирами целлюлозы карб феном, карбанилом, карбаминолом. [c.227]

    Простые эфиры целлюлозы (метиловый, этиловый, бензиловый и карбоксиметиловый) применяются для производства лаков, водорастворимых волокон и т. д. [c.256]

    Весьма детально изучены вопросы стабилизации суспензий добавками водорастворимых полимеров [58-60] - полиэтиленокси-да и эфиров целлюлозы, частично гидролизованного полиакриламида. Эффект упрочения суспензий в данном случае связан с образованием очень объемных адсорбционных слоев, препятствующих сближению частиц. При этом длинные молекулы полимеров способны адсорбироваться сразу на нескольких частицах, образуя прочные агрегаты. Увеличение вязкости дисперсионной среды и возникновение у нее пластических свойств при добавке полимера приводят к упрочению разделяющих частицы пленок среды (вязкостная составляющая расклинивающего давления). Поэтому при очень малых концентрациях полимера может наблюдаться флоку-ляция суспензий - образованные за счет адсорбции полимера агрегаты теряют седиментационную устойчивость из-за малой вязкости дисперсионной среды. [c.45]

    Функциональные добавки в В.к. эмульгаторы (дифильные ПАВ и др.) диспергаторы пигментов И наполнителей (напр., гексаметафосфат натрия) загустители (эфиры целлюлозы, сополимеры метакриловой к-ты) в-ва, придающие структурную вязкость и тиксотропность (бентонит, аэросил) консерванты, предохраняющие покрытие от образования плесени и бактериального разложения (пен-тахлорфенолят натрия) пеногасители (напр., кремнийорг. жидкости) в-ва, придающие дисперсии устойчивость к коагуляции прн повторных циклах замораживание-оттаивание (напр., высшие спирты, водорастворимые олигомеры) ингибиторы коррозии защищаемой пов-стн (ЫаЙОг, QH5 OONa). [c.407]

    Дисперсии гель-частиц, набухающие в 100-5000 раз в водах различной минерализации, могут быть получены в заводских условиях путем сополимеризации. Например, получение сополимеров акрилатных мономеров с применением макромолекулярных, полифункциональных кросс-агентов, в качестве которых могут быть использованы водорастворимые непредельные эфиры целлюлозы, метиленбисакриламид и другие полифункциональньге мономеры. Такие кросс-агенты обладают чрезвычайно высокой разветвляющей способностью в процессах радикальной трехмерной полимеризации акриловых мономеров и позволяют синтезировать сильно набухающие, но не растворимые в воде сополимеры, которые обладают хорошими деформационно-пр чностньгми характеристиками. Возможен синтез и других сополимеров, способных при набухании поглощать воду. [c.88]

    В практике химической обработки буровых растворов большое значение имеет обширная и все увеличивающаяся группа реагентов на основе полисахаридов. В эту группу входят КМЦ и другие эфиры целлюлозы, крахмал, реагенты из природных растительных камедей и морских водорослей, продукты микробиологического синтеза и др. У этих реагентов есть много общего в составе, строении и свойствах. Схематически они представляют собой совокупности макромолекулярных цепей, образованных ангидроглюкознымп циклами различных углеводных остатков, скрепленных непрочными гликозидными связями, а между цепями — ван-дер-ваальсовыми силами, водородными связями или. поперечными мостиками. Обилие функциональных групп обусловливает реакционную активность цепей и придает им характер полиэлектролитов. Природа углеводных мономеров и их функциональных групп, степени замещения, полимеризации и ветвления, однородность полимера, а также характер связей, конформация цепей и структур определяют коллоидно-химические свойства этих реагентов. Все они различаются по стабилизирующей способности и обладают сравнительно невысокой термической, ферментативной и гидролитической устойчивостью. Из исходных полисахаридов их получают путем деполимеризации и введения достаточного количества функциональных групп, с тем, чтобы обеспечить водорастворимость и необходимый уровень физикохимической активности. Таким образом, свойства будущего реагента непосредственно связаны с природой и строением исходного полисахарида. [c.156]

    Из простых эфиров целлюлозы следует упомянуть метилцеллю-лозу. Этот продукт становится водорастворимым при степени замещения не менее 130. Опыты показали ее весьма невысокие защитные свойства. [c.170]

    Из водорастворимых эфиров целлюлозы наибольшее распространение получили ее карбоксиметиловые эфиры (КМЦ). Это простые эфиры целлюлозы и гликолевой кислоты, которые получаются действием монохлоруксусной кислоты или ее натриевой соли на щелочную целлюлозу. В виде натриевой соли (Ма-КМЦ) карбоксиметиловые эфиры целлюлозы используются в качестве защитного коллоида для повышения устойчивости дисперсных систем к воздействию электролитов (например, глинистых растворов, применяемых прп бурении нефтяных и газовых скважин [1]) и добавки к синтетическим моющим средствам, [c.179]

    Для пропитки археологической древесины, в том числе и мокрой, можно использовать также водорастворимые сложные эфиры целлюлозы, гидроксиэтилцеллюлозу, гидроксипропилметилцеллюлозу, Na-КМЦ. [c.121]

    Смешанные эфиры целлюлозы применяют для изготовления лаков, пластиков, пленок, покрытий. Водорастворимые ацетофталаты целлюлозы используют в фармацевтической промышленности дтя покрытия таблеток. Смешанные эфиры целлюлозы, содержащие остатки ненасыщенных кислот акриловой и метакриловой - ацетоакрилаты и ацетометакрилаты целлюлозы, - можно использовать для дальнейшего модифицирования целлюлозы. [c.608]

    Вполне понятно, что для создания лекарственных форм нового поколения необходимы и новые вспомогательные вещества, которые обеспечили бы все те эффекты, о которых шла речь выше. Это различные эфиры целлюлозы, позволяющие создавать многослойные лекарственные формы с разлитой способностью полимерных слоев к деградации смеси пропилцеллюлозы и этилцеллюлозы в разных соотношениях для микрокапсул, поли-Ь-лактиды с различной молекулярной массой для получения оральных микропеллет, сополимеры молочной и гликолевой кислот для получения биодеградируемых пористых микросфер для парентерального введения, водорастворимые полимерные носители на основе Ы-(2-гидроксипропил) метакриламида для избирательной доставки лекарственньтх средств [21] и многие другие. [c.296]

    Пропеллент может содержать разбавители минеральные масла, пропиленгликоль, полиэтиленгликоли, ланолин и его производньте, некоторые спиртьт и неионогеттные ПАВ. Большинство обычных диспергирующих и суспендирующих веществ (трагакант, гуммиарабик, водорастворимые эфиры целлюлозы и др.) использовать для этой цели нельзя, так как они несовместимы с пропеллентами. [c.711]

    В настоящее время целлозольвы и их аналоги из пропиленгликоля включают в состав различных лаков и эмалей не только на основе эфиров целлюлозы, но также многих природных и синтетических смол. В лакокрасочной промышленности они заменяют скипидар и, кроме того, П03В0.Т1ЯЮТ придавать лакам и краскам принципиально новые качества водорастворимость и стабильность при хранении [107, с. 377 108]. Особенно ценным оказался бутилцелло-зольв, имеющий наибольшую совместимость с алкидными см,олами он снижает вязкость лаковых растворов, улучшает водорастворимость и позволяет наносить алкидный лак по нитроцеллюлозному покрытию. [c.322]

    Наибольшее значение для косметики имеют ацетил-бензил- и этилиеллюлоза и водорастворимые эфиры целлюлозы. Они легко растворяются, дают вязкие коллоиды водные растворы используются в косметике в качестве желирующих веществ при [c.104]

    Водорастворимые эфиры целлюлозы обладают большой стойкостью, почти не нуждаются в консервирующих добавках (что позволяет значительно снизить дозу глицерина в желе и зубных пастах) и могут служить защитным коллоидом при приготовлении всевозможных эмульсий, приобретающих от этих до- бавок большую стойкость. Применяются в кремах, желе, зубных пастах. [c.105]

    Наибольшее практическое значение среди простых эфиров целлюлозы имеет этилцеллюлозаусо степенью замещения 2,4—2,5. Этот эфир трудно воспламеняется, хорошо формуется, изделия нз него имеют высокую прочность на удар, сохраняя гибкость и упругость до —40°С. Водорастворимая метилцеллюлоза используется в качестве загустителя для пищевых продуктов, а также как эмульгатор и клей. [c.343]

    Поисковые работы с целью уточнения требований к таким новым видам добавок в жидкие СМС были проведены совместно с Лен-НИ ИГипрохимом и НИУИФом по полифосфатам и с МИНХ и ГП им. Губкина по водорастворимым эфирам целлюлозы. [c.307]

    При испытании образцов водорастворимых эфиров целлюлозы-изучены зав1Л имость стабильности консисте1 ции и антиресорбционной способности растворов композиций от наличия в согтаве макромолекулы эфиров с примерно одинаковой общей степенью з-вмещения ионогенных, неионогенных и смешанных замещающих групп различной химической природы. [c.309]

    Полученные результаты позволяют сделать вывод о том, что из испытанных полимернц.х фосфатов и водорастворимых эфиров целлюлозы для дальнейших исследовайий и наработки в количестве, необходимом для получения укрупненных опытных образцов жидких моющих средств улучшенного качества, рекомендуются вещества, удовлетворяющие ниже перечисленным требованиям  [c.310]

chem21.info

Использование целлюлозы в качестве утеплителя

Одним из важнейших этапов строительства или ремонта помещения является утепление всех поверхностей, пропускающих тепло наружу, где ему совсем не место, особенно в холодное время года. Чтобы тепло не улетучивалось сквозь «дырявые пальцы» стен и пола, необходимо заранее позаботиться об их надежном утеплении. Современный строительный рынок предлагает множество способов, как это сделать. Материалы различаются по своим эксплуатационным качествам и, соответственно, по степени дороговизны. Наиболее же бюджетным и доступным вариантом выступает старая добрая бумага.

Бумагу в чистом виде для строительства, естественно, не используют, т.к. она пропускает влагу. Но можно иметь дело со следующими вариациями:

  1. эковата;
  2. крафт-бумага;
  3. гофрокартон.

Картон, эковата и целлюлозные плиты

Эковату получают в результате переработки плотной бумаги (картона) на макулатуру. Материал-родитель можно закупить на специальных фирмах - благо, производство картонных коробок в нашей стране развито довольно хорошо. В зависимости от цены, на которую рассчитываете, вы можете закупить либо полноценную продукцию, либо бракованные изделия и отходы производства (их вам скорее всего отдадут бесплатно)). Картон также можно использовать для утепления в чистом виде, но такая конструкция чрезвычайно ненадежна, или пускать его на изготовление целлюлозных плит.

Преимущества плит состоят в том, что они:

  1. экономичны;
  2. обеспечивают надежную защиту от холодов;
  3. просты в использовании.

Среди недостатков только долгий срок изготовления (10 дней).

Крафт-бумага

При утеплении дома крафт-бумага является добавочным материалом – ее используют для защиты от ветра. Это очень «компанейский» материал. Волокна сульфаидной целлюлозы (в них держат древесину во время изготовления крафт-бумаги) хорошо ладят с лесопильными отходами, обладающими высокими теплоизоляционными свойствами. Также материал очень экологичен и отличается высокой прочностью.

Гофрокартон

В отличии от крафт-бумаги, гофрокартон – материал вполне автономный.

Положительными свойствами картона являются:

  1. бюджетность;
  2. прочность;
  3. легкость использования при монтаже;
  4. высокое качество теплоизоляции;
  5. доступность материала (картон большими объемами вывозится со строительных фирм в качестве отходов).

Однако при всех достоинствах, существенным минусом гофрокартона является его горючесть. Также материал «пасует» перед воздействием влаги и грешит излишним гостеприимством для грызунов.

novosibdom.ru

Производство эфиров целлюлозы - Энциклопедия по машиностроению XXL

Целлюлоза, применяемая в качестве исходного материала для производства эфиров целлюлозы, является основным веществом, образующим ткани растений. В естественном состоянии она представляет собой высокополимерный материал, образующийся, по-  [c.459]

Производство эфиров целлюлозы  [c.307]

В производстве технической керамики находят применение и другие эфиры целлюлозы. Однако их производство и соответственно применение ограничено.  [c.46]

Фурфурол. Чистый фурфурол — бесцветная жидкость с характерным запахом, но технический фурфурол окрашен в цвет от слабо-желтого до коричневого. Обычно его хранят в железной или стальной таре без специальных предосторожностей. При длительном соприкосновении с воздухом фурфурол постепенно темнеет, его кислотность и содержание в нем полимера увеличиваются. Его применение в качестве селективного растворителя для рафинирования масел описано в гл. И, а для обесцвечивания экстракционной канифоли в гл. III. Он является растворителем масляно-смоляных лаков, простых и сложных эфиров целлюлозы и некоторых виниловых смол. Из-за окраски его нельзя применять для производства белых или светлых покрытий. Из-за сильного проникаю-  [c.308]

Из приведенных в табл. 83 эфиров целлюлозы наиболее широкое применение в производстве лакокрасочных покрытий находит нитроцеллюлоза. Ее недостатками являются склонность к разло-  [c.458]

Ацетилцеллюлоза представляет собой материал, обладающий весьма разнообразными свойствами, широко применяемый в производстве пластмасс, в текстильной промышленности, в ограниченном количестве в производстве органических покрытий. Основное препятствие для ее применения в производстве покрытий заключается в относительно плохой ее совместимости со смолами и пластификаторами и недостаточной растворимости в ряде органических растворителей. Приведенное в табл. 83 (стр. 4Й) сопоставление свойств ацетилцеллюлозы со свойствами других эфиров целлюлозы показывает, что ее пленка обладает прочностью и удлинением приблизительно такими же, как пленка нитроцеллюлозы. Температура размягчения ацетилцеллюлозной пленки выше, а скорость горения меньше, чем нитроцеллюлозной пленки. Ацетилцеллюлоза обладает превосходной стойкостью к действию ультрафиолетовых лучей, и в противоположность нитроцеллюлозе цвет ее не меняется под действием света и тепла. Из всех эфиров целлюлозы ацетилцеллюлоза наименее водостойка.  [c.500]

Производство. Ацетилцеллюлоза представляет собой сложный эфир целлюлозы, который получают взаимодействием уксусного ангидрида и ледяной уксусной кислоты с целлюлозой в присут-  [c.500]

Этилцеллюлоза обладает рядом положительных свойств, делающих ее очень ценным материалом для производства покрытий. Так как она является простым эфиром целлюлозы, то она более щелочестойка, чем сложные эфиры целлюлозы. Этилцеллюлоза более подвержена действию кислот, но разбавленные кислоты на нее действуют не сильно. Некоторые этилцеллюлозы более эластичны, чем сложные эфиры целлюлозы, что видно из табл. 83 (стр. 458), и ее эластичность лучше сохраняется при низких температурах. Она меньше разлагается при действии солнечного и ультрафиолетового света и более теплостойка, чем нитроцеллюлоза. Однако в композиции, содержащие этилцеллюлозу, следует вводить антиоксиданты, если эти композиции подвергаются нагреванию выше температуры плавления этилцеллюлозы. Этилцеллюлоза хорошо совмещается с рядом пластификаторов, смол, масел и ВОСКОВ. Она хорошо растворяется в большом числе растворителей, в том числе в дешевых ароматических углеводородах и этаноле.  [c.521]

Ацетон — прозрачная жидкость с едким запахом, активный растворитель для эфиров целлюлозы, широко применяется в производстве нитролаков.  [c.47]

Триацетатные пленки получают из триацетата целлюлозы, представляющего собой сложный эфир целлюлозы. Достоинства ацетатных пленок — прозрачность, малая деформируемость, долговечность. Неограниченная сырьевая база, низкая стоимость и ценные специфические свойства обусловливают использование данных пленок наряду с пленками из синтетических полимеров. Ацетатные пленки применяют в качестве элементов изоляции электрических машин, в производстве конденсаторов, как электроизоляционные прокладки в катушках трансформаторов и т. п.  [c.103]

Нитроцеллюлоза — это азотнокислый эфир целлюлозы, является основой старейшего пластика — целлулоида. Целлулоид является твердым раствором нитроцеллюлозы в камфоре. Недостатком его является горючесть, а целлулоидная пыль к тому же взрывоопасна. Это ограничивает промышленное применение целлулоида, используемого главным образом для производства изделий бытового обихода.  [c.40]

Эти смолы нашли применение в производстве спиртовых лаков и в лаках на эфирах целлюлозы.  [c.22]

Метилэтилкетон получается совместно с ацетоном при сухой перегонке дерева. Он представляет собой бесцветную жидкость с запахом ацетона, уд. в. 0,8058 г/сж , т. кип. 79,6° хорошо растворяет эфиры целлюлозы применяется в производстве целлюлозных лаков, заменяя ацетон (главным образом в ацетил-целлюлозных лаках) отличается от ацетона меньшей летучестью.  [c.63]

Диоксан — бесцветная жидкость со слабым запахом хорошо смешивается с водой уд. в. 1,0353 г/сж при 20° т. кип. 95—105°. Диоксан — хороший растворитель для эфиров целлюлозы и искусственных смол, применяется в производстве нитроцеллюлозных и ацетилцеллюлозных лаков. Пары диоксана вредны для здоровья.  [c.63]

Лаки на основе эфиров целлюлозы нашли широкое применение в автомобилестроении, самолетостроении, при окраске мебели, в производстве искусственной кожи, клеенки, карандашей и других изделий.  [c.142]

По окончании войны определились новые пути развития лакокрасочной промышленности широкое применение разнообразных синтетических лаковых смол, организация производства новых видов эфиров целлюлозы, пластификаторов, растворителей, пигментов и др. К этому времени была проведена коренная реконструкция старых заводов и начало развертываться строительство  [c.6]

Сырье, применяемое в производстве лаков, олиф, красок и эмалей, можно разделить на следующие основные группы масла, смолы естественные и искусственные, эфиры целлюлозы, растворители и разбавители, пластификаторы (смягчители), пигменты, сиккативы.  [c.9]

В производстве лаков применяются полистиролы с невысокой степенью полимеризации. Недостатками полистиролов являются малая теплостойкость и плохое прилипание к поверхности. Полистиролы применяются для изготовления изоляционных лаков. Они устойчивы к химическим воздействиям, совместимы с маслами, полиэфирными смолами, с эфирами канифоли, но не совмещаются с эфирами целлюлозы и феноло-формальдегидными смолами.  [c.41]

Простые и сложные эфиры являются важнейшими растворителями в производстве лаков на эфирах целлюлозы. Они хорошо растворяют многие смолы, жиры и масла. Основными исходными материалами для их получения служат соответствующие спирты и кислоты.  [c.52]

Ацетон получается путем сухой перегонки дерева и брожением крахмала при производстве бутилового спирта. Продажный ацетон содержит большее или меньшее количество метилового (древесного) спирта. Чистый ацетон—бесцветная жидкость уд. вес 0,7970—0,9008 при 15° т. кип. 56°. Он смешивается с водой во всех соотношениях, растворяется в метиловом спирте, этиловом спирте, хлороформе. Ацетон хороший растворитель эфиров целлюлозы, многих смол и масел.  [c.54]

Эфиры целлюлозы в производстве электроизоляционны с лаков имеют ограниченное применение. Известны лаки на основе пластифицированной нитроцеллюлозы, применяющиеся для лакировки некоторых видов проводов и для окраски изделий (нитроэмали), а также лаки на основе пластифицированной этилцеллюлозы для лакировки некоторых монтажных проводов и прс юдов специального назначения. Эфироцеллюлозные лаки являются растворами соответствующего материала в смеси ацетатов со спиртами. Они относятся к лакам холодной сушки.  [c.154]

Отличительной особенностью технологии производства данной бумаги является невысокое содержание в ней ингибитора, не превышающее 4 г на 1 м бумаги-основы. Использованием антикоррозионной упаковочной бумаги Ко-Пакк достигается удовлетворительная защита меди и медных сплавов от атмосферной коррозии. Круг защищаемых изделий включает в себя фольгу, проволоку, листы, медные платы, печатные схемы, бытовые изделия и т. д. Антикоррозионная бумага хорошо совмещается с различного рода неорганическими и органическими покрытиями, красками, эмалями, деревом, кожей, каучуком, латексами, эфирами целлюлозы. Упаковочная бумага с метилбензотриазолом в 5 раз менее токсична, чем бумага с ингибитором НДА или смесью нитрита натрия и мочевины, что существенно, если учесть то значение, какое придают в настоящее время защите окружающей среды.  [c.128]

Этролы — термопластичные композиции на основе пластифицированной ацетилцеллюлозы и нитроцеллюлозы (или других эфиров целлюлозы), содержащие минеральные наполнители (каолин и др.), пластификаторы и красители. Выпускаются в виде лепестков и прессовочного порошка. Изготовление деталей производится прессованием в горячих охлаждаемых прессформах или методом литья под давлением. Применяются для производства штурвалов, деталей радио-телефонной и осветительной арматуры, а также изделий декоративного назначения.  [c.296]

Применение хлорированных. парафинов в комбинации -с различными каучуковыми смолами описано выше в настоящей главе,, а их применение в сочетании с эфирами целлюлозы и виниловыми полимерами будет рассмотрено в последующих главах. Раствор высокохлорированного парафина применяется в качестве огнезащитного покрытия по дереву. Такие покрытия наносятся по дереву, пролитанному водорастворимыми огнезащитными солями.. Снижая выщелачивание солей, ойи в то же время создают поверхность, пригодную для нанесения последующих покрытий. Так как пигментированные покрытия на этой основе обладают хорошей атмосферостойкостью, то их применяют также для производства огнезащитных красок по деревянной кровле.  [c.422]

Из невысыхающих масел пластификаторами являются касторовое, сурепное и хлопковое. Их применяют как в виде сырых, так и в-виде окисленных или иным способом препарированных масел. Так называемые лаковые масла представляют собой хлопковое и соевое масла, превращенные специальной обработкой в невысыхающие и растворимые в спирте продукты. В таком виде их можно применять в качестве пластификаторов некоторых полимеров, как например эфиров целлюлозы. Типичным примером таких пластификаторов являются лаковые масла ADM фирмы Ar her — Daniels — Midland o. Как правило, минеральные масла являются плохими пластификаторами, о их все же иногда применяют в производстве некоторых дешевых покрытий.  [c.429]

Лаковые масла. Как правило, окисляющиеся вещества не применяют в производстве летучих лаков, так как в их присутствии нанесение второго слоя часто вызывает вспучивание первого слоя. Некоторое окисление, происходящее за время между нанесением первого и второго слоев, приводит к частичной нерастворимости первого слоя в лаковых растворителях. Следовательно, в этих условиях второй слой не растворяет первый слой покрытия, а вызывает весьма неприятное появление морщин или так называемое вспучивание. Это явление подробно рассматривается в гл. XI, Эфиры целлюлозы. Фирма Ar her — Daniels — Midland o. производит из льняного масла пластифицирующее лаковое масло, которое в условиях эксплуатации в течение ряда лет дало очень хорошие результаты (табл. 74). Совсем недавно эта фирма начала изготовлять из соевого масла лаковые масла более светлого цвета, чем из льняного.  [c.439]

Смолы Параплекс применяют главным образом в производстве нитроцеллюлозных лаков и в композициях виниловых смол. Все смолы Параплекс совместимы с нитроцеллюлозой, но степень их совместимости с другими эфирами целлюлозы и виниловыми смолами несколько отлична. Некоторые из них применяют в комбинации с мочевино- и мелам ино-формальдегидными смолами в производстве покрытий горячей сушки. Параплексы RG-2, RG-8 и RG-10 совместимы с нитроцеллюлозой, этилцеллюлозой, поливинил-бутиралем и мочевино-формальдегидными смолами, но они различаются по цвету и консистенции. Параплекс RG-10 окрашен в более светлый цвет и обладает способностью лучше растворять нитроцеллюлозу. Способность пластификатора лучше растворять нитроцеллюлозу снижает его тенденцию выпотевать из пленки. Параплекс RG-8 имеет наименьшую вязкость и может быть с успехом использован для перетира пигментов в производстве пигментированных лаков. Он хорошо смачивает пигменты, и его можно применять для перетира пигментов без растворителей. Это исключает обычную потерю растворителя при перетире пигментов на вальцовой краскотерке.  [c.441]

В качестве эфиров целлюлозы в производстве органических покрытий, пластических масс, слоистых пластиков, клеев и т. д. применяют как простые, так и сложные эфиры целлюлозы. Из сложных эфиров для этой цели применяются нитрат целлюлозы (обычно называемый нитроцеллюлозой), ацетат целлюлозы и смешанные эфиры — ацетобутират и ацетопропионат целлюлозы, а из простых эфиров — этилцеллюлоза и бензилцеллюлоза. Известны также и другие эфиры целлюлозы, например метилцеллю-лоза и карбоксиметилцеллюлоза, но так как они водорастворимы, то ИХ обычно не относят к эфирам целлюлозы, пригодным для производства органических покрытий. Тем не менее они описаны в этой главе.  [c.457]

Ацетопропионаты целлюлозы в настоящее время не находят широкого применения в производстве покрытий. Робертс и Вайсберг [19] в подробной статье описали их применение для производства авиационных лаков. В этой статье приводятся исчерпывающие данные о растворах этого эфира целлюлозы и свойствах его пленок, а также о механиз1ме усадки 1пленки и действия пластификаторов. Авторы нашли, что пленка, полученная из смеси растворителей и разбавителей, дает большую усадку, чем пленка, полученная из одного растворителя.  [c.519]

Пленки из эфиров целлюлозы получают толщиной от 30 до 300 мкм отливом на гладкую поверхность и сушкой для удаления растворителя. В основном изготовляют пленку из триацетата целлюлозы (ТАЦ), редко из аце-тобутирата и трипронионата целлюлозы, которые существенно не различаются между собой. Пленка из ТАЦ обладает хорошими диэлектрическими свойствами, малой степенью образования электростатических зарядов, длительной нагревостойкостью до 120 °С. В СССР пленки из эфиров целлюлозы для электротехнических целей в настоящее время не применяются. Пленка ТАЦ, изготовленная по ОСТ 6-17-451-83, используется в качестве основы при производстве пленок для фотокинотехники.  [c.89]

Термопластичные материалы, (на основе метилметакрилата, эфиров целлюлозы, виниловых эфиров, полистрола и др.), размягчающиеся под воздействием температуры, применяются для изготовления деталей различными методами прессования, а также для производства органического стекла, винипласта и др.  [c.295]

Эфиры целлюлозы применяют для производства различных пластмасс. Для придания эфирам целлюлозы упругости и пластичности при повышенных температурах их пластифицируют. Значительное количество пластификата вводят в нитроцеллюло зу. Кро-ме пластификаторов, в эфироцеллюлозу вводят небольшое количество порошкообразных минеральных пигментов, а в нитроцеллюлозы для увеличения их прочности — и некоторое количество хлопковых очесов.  [c.157]

Приведены данные по коррозионной стойкости конструкционных и защитных материалов, применяемых для изготовления оборудования производств мономеров и полимеров акриловых мономеров и продуктов на их основе винилхлорида, его полимеров и сополимеров полиолефинов полимеров и сополимеров стирола полиформальдегида поливинилового спирта и его призводных эпоксидных полимеров эфиров целлюлозы. Обобщен опыт эксплуатации оборудования этих производств.  [c.2]

Основным, часто единственным компонентом термопластических литьевых пластических масс является смола поэтому литьевые массы классифицируют по типу примененной смолы. Для производства литьевых масс наибольшее применение находят полистирол, сополимеры стирола и метилметакрилата, пластифицированные эфиры целлюлозы несколько в меньшем количестве применяют полиэтилен, полиамиды, полиуретаны, поливинилхлориды, полифторэтилены. Технологические свойства термопластических масс характеризуют содержанием летучих в материале, усадкой во время формования и текучестью при повышенной температуре.  [c.60]

Для производства этролов применяют как сложные, так и простые эфиры целлюлозы. Для придания эфирам целлюлозы упругости в обычных условиях применения и пластичности при повышенных температурах их пластифицируют. Наибольшее количество пластификатора необходимо вводить в нитроцеллюлозу. Несмотря на высо-  [c.63]

Волокна растительного происхождения благодаря их высокой механической прочности и атмосферостойкости применяют для изготовления авиационных текстильных материалов, работающих в условиях постоянного атмосферного воздействия тканей для полотняной обшивки и для оклейки фанерной обшивки самолетов, для защитных чехлов на самолеты и двигатели, для изготовления веревок, канатов, куполов грузовых парашютов и т. п. Короткое хлопковое волокно ( линтер , делинт ) благодаря высокому содержанию в нем целлюлозы (98%) применяют в производстве бумаги и эфиров целлюлозы.  [c.289]

Простые и сложные эфиры являются выжнейшими растворителями в производстве лаков на основе эфиров целлюлозы. Они  [c.60]

mash-xxl.info