Большая Энциклопедия Нефти и Газа. Сложный эфир муравьиной кислоты


Сложный эфир - муравьиная кислота

Сложный эфир - муравьиная кислота

Cтраница 1

Сложные эфиры муравьиной кислоты можно сравнить с альдегидами; они также взаимодействуют с реактивом Гриньяра, образуя вторичные спирты. Поэтому формиаты удобно применять для получения симметричных вторичных спиртов.  [1]

Сложные эфиры муравьиной кислоты в этих условиях образуют вторичные спирты.  [2]

Сложные эфиры муравьиной кислоты употребляются в качестве душистых веществ, эссенций ( стр. В технике муравьиная кислота применяется для замены более дорогой уксусной кислоты.  [3]

Сложные эфиры муравьиной кислоты в реакциях с пятихлористым фосфором напоминают альдегиды; в результате этих реакций образуются простые дихлорметиловые эфиры.  [4]

Некоторые из сложных эфиров муравьиной кислоты, называемые формиатами, находят применение в качестве душистых веществ. Сложные эфиры муравьиной кислоты и алифатических спиртов обладают в основном фруктовыми запахами. Эфиры терпеновых спиртов имеют интересные запахи цветочного направления, формиаты ароматических спиртов - фруктового направления.  [5]

ИЗОАМИЛФОРМИАТ также является сложным эфиром муравьиной кислоты и придает продуктам сливовый аромат.  [6]

ИЗОАМИЛФОРМИАТ - является сложным эфиром муравьиной кислоты и придает продуктам сливовый аромат.  [7]

Здесь под действием соляной кислоты на сложный эфир муравьиной кислоты происходит вытеснение последней с образованием аллилового эфира хлористоводородной кислоты.  [8]

Адикес [122] растворяет в абсолютном спирте немного натрия, добавляет соответствующий сложный эфир муравьиной кислоты и.  [9]

Окись углерода с жирными или ароматическими спиртами реагирует с образованием сложных эфиров муравьиной кислоты, реакция ускоряется в присутствии этилата натрия или муравьи-нокислого натрия и других катализаторов.  [10]

Окись углерода с жирными или ароматическими спиртами реагирует с образованием сложных эфиров муравьиной кислоты; реакция ускоряется в присутствии этилата натрия или муравьи-нокислого натрия и других катализаторов.  [11]

Часто по количеству муравьиной кислоты, образующейся при окислении полисахарида периодатом в условиях гидролиза сложных эфиров муравьиной кислоты, определяется степень разветвленности полисахаридов. Количество молей муравьиной кислоты, приходящееся на макромолекулу полисахарида, является мерой числа ответвлений. Степень разветвленности полисахаридов определяется отношением числа концевых остатков к общему числу остатков, составляющих полимерную молекулу.  [12]

Было показано, что в присутствии алкоголята натрия окись углерода взаимодействует со спиртами, образуя соответствующие сложные эфиры муравьиной кислоты.  [13]

Можно принять, что механизм реакции примерно такой же, как и в случае хорошо известного катализируемого основаниями гидролиза сложных эфиров, Происходящее при этом нуклеофильное смещение может объяснить ряд фактов, касающихся скоростей гидролиза сложных эфиров муравьиной кислоты по сравнению с ацетатами.  [14]

Некоторые из сложных эфиров муравьиной кислоты, называемые формиатами, находят применение в качестве душистых веществ. Сложные эфиры муравьиной кислоты и алифатических спиртов обладают в основном фруктовыми запахами. Эфиры терпеновых спиртов имеют интересные запахи цветочного направления, формиаты ароматических спиртов - фруктового направления.  [15]

Страницы:      1    2

www.ngpedia.ru

Сложные эфиры муравьиной кислоты (формиаты)

    Особенности надмолекулярной структуры целлюлозы и сильное межмолекулярное взаимодействие затрудняют получение высокозамещенных эфиров. Получить сложный эфир целлюлозы действием органической кислоты в присутствии кислотного катализатора удается лишь в случае эфиров муравьиной кислоты (формиатов). Действием ангидридов кислот можно получать только эфиры низших жирных кислот - ацетаты, пропионаты, бутираты. Эфиры целлюлозы и высших жирных кислот (например, стеариновой), а также ароматических, дикарбоновых и других кислот удается получить лишь при действии на целлюлозу соответствующих хлорангидридов в присутствии основания (пиридина, других аминов и т.п.), а также методом переэтерификации. [c.602]     Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты — ацетаты. Прочие эфиры (кислот молочной — лактаты, масляной — бу-тираты, муравьиной —формиаты) нашли ограниченное применение. Формиаты из-за сильной омыляемо-сти и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот [45], а также алкилен-карбонаты [46, с. 469]. Физико-химические свойства наиболее распространенных сложных эфиров приведены в табл. 11 и 12. [c.47]

    СЛОЖНЫЕ ЭФИРЫ МУРАВЬИНОЙ КИСЛОТЫ (ФОРМИАТЫ) [c.296]

    Муравьиная (метановая) кислота НСООН. Название связано с тем, что муравьиная кислота содержится в выделениях муравьев. Соли II сложные эфиры муравьиной кислоты имею г тривиальное название формиаты. В промышленности муравьиную кислоту получают при взаимодействии оксида углерода(П) с горячим раствором гидроксида натрия при повышенном давлении. [c.274]

    В ряду сложных эфиров особое место занимают эфиры муравьиной кислоты (формиаты) благодаря тому, что они содержат функциональную группу альдегидов. Поэтому интересно установить, распадаются ли формиаты аналогично альдегидам с образованием в качестве первичного продукта реакции окиси углерода, или же как-нибудь иначе. [c.512]

    В названиях рассмотренных трех кислот используются русские корни, тогда как для их производных (солей, сложных эфиров и т.п.) принято использовать латинские корни формиат-для муравьиной кислоты, ацетат-для уксусной, бутират-для масляной. [c.110]

    Другие из перечисленных выше работ нашли применение в промышленном масштабе, например полимеризация бутадиена в СК, окисление нефтяных погонов, каталитический крекинг, винилэтинилкарбинол, виниловые эфиры, разложение формиатов для иолучения муравьиной кислоты, получение сложных эфиров. [c.185]

    Некоторые из сложных эфиров муравьиной кислоты, называемые формиатами, находят применение в качестве душистых веществ. Сложные эфиры муравьиной кислоты и алифатических спиртов обладают в основном фруктовыми запахами. Эфиры терпеновых спиртов имеют интересные запахи цветочного направления, формиаты ароматических спиртов - фруктового направления. Наиболее широко применяются в качестве душистых веществ эфиры муравьиной кислоты и цитронеллола (цитронеллилформиат) и -фенилэтилового спирта ф -фенилэтилформиат). [c.91]

    Карбоновые кислоты вступают в реакцию этерификации тем легче, чем сильнее проявляются у них кислотные свойства. Сложные эфиры муравьиной кислоты (этил-формиат) и щавелевой кислоты (диэтилбксалат) можно получать без добавления минеральной кислоты. Однако надо помнить, что чем легче образуется сложный эфир, тем легче он гидролизуется. Поэтому синтез диэтилового эфира щавелевой кислоты проводят при охлаждении реакционной смеси льдом. Сложные эфиры сильных кислот нельзя тщательно промывать водой. [c.50]

    Гидролиз сложных эфиров 13]. Метод расщеплеиия сложного эфнра в иещелочных условиях состоит в кипячении 0,1 моля сложного эфира и 0,1 моля М. в 100 мл 90%-ной муравьиной кислоты в течение 5 час. Выход кислоты 64—97% сппртовый остаток сложного эфира превращается в формиат. М. является наилучшим реагентом для этой цели серная кислота дает гораздо более низкие выходы, /г-толуолсульфокислота — еще ниже, а трифторуксусная и фосфорная кислоты не реагируют вовсе. [c.249]

    Муравьинокислые эфиры целлюлозы (формиаты) обладают совершенно особыми свойствами и занимают первое место в полимер-гомологическом ряду сложных эфиров целлюлозы и высших жирных кислот. Природная целлюлоза, если только набухание ее не происходит предварительно или параллельно, с трудом поддается формилированию. Гидратцеллюлоза легко формилируется безводной или 98%-ной муравьиной кислотой с серной кислотой в качестве катализатора, но эта реакция обычно является неполной, и триформиат образуется редко. Уйеда и Хата [306] приготовили сложный эфир, содержащий 50,5% муравьиной кислоты (в триформиате 56,09%), этерифицируя регенерированную целлюлозу безводной муравьиной кислотой и серной кислотой. Монтонна [304] приготовил триформиат двухступенчатым способом. Сначала он получал диформиат, обрабатывая целлюлозу 96%-ной муравьиной кислотой, содержащей достаточное количество хлористого ацетила длятого, чтобы связать воду, а затем обрабатывал диформиат 99%-ной муравьиной кислотой. Формиаты целлюлозы являются весьма неустойчивыми и разлагаются даже при комнатной температуре. Они не растворяются в обычных органических растворителях, но растворяются в пиридине, муравьиной кислоте, в водных растворах некоторых солей, в частности в тиоцианатах и в хлористом цинке. [c.300]

    Высокий выход эпоксидных соединений возможен при условии поддержания в реакционной среде значений pH, соответствующих слабой щелочности. В этих условиях они могут быть получены в виде основного продукта, тогда как в кислой среде наблюдается тенденция преимущественно к образованию продуктов распада, хотя при этом присутствуют также гликоли (часть в виде сложных эфиров). Сообщалось о выделении эпоксидных соединений при окислении ряда олефинов Исследование их строения показало, что во всех случаях в эпоксидной группе находятся два углеродных атома, соединенных в исходном углеводороде двойной связью. Кроме того, были найдены продукты последующей перегруппировки эпоксидных соединений или гликолей (альдегиды, кетоны и непредельные спирты) Продукты, образующиеся с деструкцией углеродной цепи при окислении 2, 4, 4-триметилпеитена-1 представлены неопентилке-тоном и формальдегидом (в виде муравьиной кислоты и формиатов) 3, 4, 4-триметилпентена-2 — ацетальдегидом и пииако-лином 2, З-диметилоктена-2 — ацетоном и гептаноном-2. [c.475]

    В гомогенном катализе гидролиз сложных эфиров ведут обычно в щелочных растворах. Поэтому представляло интерес испытать эту реакцию при катализе твердыми основаниями. Это было нами сделано на примере гидролиза бутилформиата на Са(ОН)г при 200—400° и на СаО при 400°. СаО получалась прокалкой СаСОз при 950°. Реакция идет почти до конца на обоих катализаторах. В продуктах реакции в обоих случаях преобладал бутиловый спирт. В газах много окиси углерода, по-видимому, образующейся за счет распада муравьиной кислоты. Последняя в продуктах обнаружена не была. Возможно, что она не только разлагалась, но частично химически реагировала с катализатором, давая нестойкие формиаты. На это указывает тот факт, что по балансу опытов сумма всех собранных продуктов была несколько меньше веса исходного эфира. Таким образом, и гидролиз сложных эфиров относится к реакциям, которые катализируются как твердыми основаниями (СаО, Са(ОН)г), так и кислотными окислами. [c.300]

    Рассматривая пиролиз сложных эфиров, следует упомянуть, что формиаты способны к иному превращению. Так, классический синтез аллилового спирта из глицерина и муравьиной кислоты протекает через стадию образования моноформиата, разлагающегося с отщеплением воды и двуокиси углерода (СОП, 1, 25 выход 47%)  [c.593]

    В химической промышленности наиболее многотоннажным потребителем муравьиной кислоты является синтез ди-метилформамида — весьма распространенного растворителя и экстрагента органических веществ. На основе формиата натрия фирма Коепп получала щавелевую кислоту для синтеза сложных эфиров. [1]. Формиат натрия применяется также в качестве вспомогательного вещества в текстильной промышленности. [c.15]

    Около 30% от определяемого химически содержания омыляемых соединений составляют истинные циклогексилозые эфиры, половина которых приходится на долю циклогексил-формиата. Увеличение температуры окисления циклогексаиа приводит к некоторому изменению в составе эфиров. Если содержание циклогексилформиата в оксидате, полученном прп температуре 160°С, составляет примерно 4% (от всех омыляемых соединений), то при повышении температуры окисления до 190°С содержание циклогексилформиата увеличивается до 16—20% и истинных сложных эфиров—до 60%. Такое изме- ение в составе цнклогексиловых эфиров может быть объяснено определенным соотношением констант и высокой концентрацией свободной муравьиной кислоты. Как видно в табл. 1, муравьиная кислота составляет. половину всех кислот. Константа скорости этерификации этой кислотой на порядок выше остальных кислот" и быстро растет с увеличением температуры. Это связано с тем, что энергия активации этерификации циклогексанола карбоновыми кислотами увеличивается с уменьшением молекулярного веса кислот от капроновой к му-44 [c.44]

    Муравьиная кислота применяется в значительном количестве в анилинокрасочной и фармацевтической промышленности в качестве адилируюшего средства, как наиболее сильная органическая кислота, а также в текстильной промышленности при крашении и печатании тканей, в кожевенной промышленности для промывки шкур после обработки их известью, для дезинфекции бродильных чанов. Значительное количество ее идет для производства сложных эфиров (формиатов) и других продуктов, используемых в лакокрасочной и других отраслях промькшленности. Она находит применение в медицине (в виде разбавленного водного или спиртового 1-1,5%—кого раствора). [c.64]

chem21.info

Взаимодействие эфиров муравьиной кислоты - Справочник химика 21

    Равным образом, естественно, что и бром-З-диметил-2,4-пен-тан, взаимодействуя с эфиром муравьиной кислоты, дал первичный спирт—метил-2-изопропил-3-бутанол-4. Первичный, но [c.293]

    Синтез вторичных и третичных спиртов. Взаимодействие сложных эфиров с магнийорганическими соединениями является методом синтеза вторичных и третичных спиртов при применении этилового эфира муравьиной кислоты (этилформиата) образуются вторичные спирты (уравне- [c.52]

    ФОРМИАТЫ — соли и эфиры муравьиной кислоты НСООН. Наибольшее значение имеет натриевая соль муравьиной кислоты, которую в промышленности получают взаимодействием оксида углерода с едким натром. Ф. натрия применяют для производства щавелевой кислоты, дубления кожи и др. Из эфиров наибольшее значение имеют метиловый и этиловый их используют как растворители, фумиганты, в органических синтезах (форма ми да, витамина В1), в парфюмерии и др. [c.264]

    Особенности надмолекулярной структуры целлюлозы и сильное межмолекулярное взаимодействие затрудняют получение высокозамещенных эфиров. Получить сложный эфир целлюлозы действием органической кислоты в присутствии кислотного катализатора удается лишь в случае эфиров муравьиной кислоты (формиатов). Действием ангидридов кислот можно получать только эфиры низших жирных кислот - ацетаты, пропионаты, бутираты. Эфиры целлюлозы и высших жирных кислот (например, стеариновой), а также ароматических, дикарбоновых и других кислот удается получить лишь при действии на целлюлозу соответствующих хлорангидридов в присутствии основания (пиридина, других аминов и т.п.), а также методом переэтерификации. [c.602]

    Синтез альдегидов и кетонов. Альдегиды и кетоны могут быть получены взаимодействием реактивов Гриньяра с эфирами кислот. Из эфиров муравьиной кислоты получают альдегиды. Эфиры всех остальных кислот дают кетоны  [c.216]

    Одним из соединений, изомерных предельной одноосновной кислоте, может быть сложный эфир, при этом по условию задачи исключается эфир муравьиной кислоты. Предположим, что кислоты, и соответственно сложного эфира в смеси содержится по х молей, а атомов углерода в каждой молекуле этих соединений — п. При взаимодействии исходной смеси с раствором бикарбоната (уравнение 1) образуется X молей СОг, а при сожжении всей смеси объем образовавшегося СОг будет равен 2пх (уравнения 2, 3). [c.213]

    Взаимодействие этиленовых соединений с эфирами муравьиной кислоты  [c.116]

    Для получения спиртов очень часто используют реакцию взаимодействия алкилмагниевых солей (раньше применяли также цинкдиалкилы) с альдегидами, кетонами или эфирами кислот. При этом из алкилмагниевых солей и указанных соединений образуются сначала продукты присоединения, которые затем при действии воды распадаются на спирт и основную соль магния. Из альдегидов и эфиров муравьиной кислоты образуются вторичные спирты, а из кетонов и эфиров всех других карбоновых кислот — третичные  [c.111]

    Сложные эфиры муравьиной кислоты образуют первоначально альдегиды, а сложные эфиры других кислот — кетоны. Взаимодействие со второй молекулой реактива Гриньяра приводит к образованию вторич / ных или третичных спиртов / [c.307]

    Муравьиная (метановая) кислота НСООН. Название связано с тем, что муравьиная кислота содержится в выделениях муравьев. Соли II сложные эфиры муравьиной кислоты имею г тривиальное название формиаты. В промышленности муравьиную кислоту получают при взаимодействии оксида углерода(П) с горячим раствором гидроксида натрия при повышенном давлении. [c.274]

    Взаимодействие оксида углерода со спиртами при катализе соответствующим алкоголятом происходит путем его атаки молекулой СО с промежуточным образованием карбапиона, который отрывает протон от молекулы спирта, регенерируя катализатор и образуя эфир муравьиной кислоты (формиат)  [c.545]

    Действительно, при взаимодействии метилэтилкетона с этиловым эфиром муравьиной кислоты обнаружены продукты конденсации по метильной и метиленовой группам в отношении 1 3—4, а при той же реакции с этиловым эфиром уксусной кислоты даже в наиболее благоприятных условиях это отношение составляет приблизительно 5 1. Из эфиров карбоновых кислот с ббльшим числом атомов углерода образуются практически исключительно неразветвленные р-дикетоны. К сожалению, пока отсутствуют исследования с помощью более современных методов. [c.311]

    Для объяснения этих процессов предложен следующий механизм [18]. При взаимодействии эфира муравьиной кислоты с галоидмагнийалкоголятом первоначально образуется алкоголят RO H(O 2H5)OMgX, после обработки которого разбавленной кислотой отщепляется спирт и образуется сложный эфир  [c.239]

    Взаимодействие эфиров муравьиной кислоты с P Is [11]. В колбу помещают 1 моль алкилформиата и при 0°С и постоянном перемешивании порциями добавляют 0,9 моль P I5. После прибавления всего количества P lj ледяная баня убирается и перемешивание продолжают сначала при комнатной температуре, затем при небольшом нагревании (если это необходимо) до полного растворения РСЬ. Полученные продукты реакции разделяют фракционированием на колонке. [c.116]

    Проведите гидролиз соединений, полученных взаимодействием этилового эфира муравьиной кислоты с бромистым этилмагнием, иодистым изопропилмагнием, бромистым изобутилмагнием. [c.76]

    В своей последующей работе [7], опубликованной в 1874 г., Е. Е. Вагнер и А. М. Зайцев предложили своеобразную схему проведенной реакции получения нового изомера ампльного алкоголя , в которой, однако, не было пока и намеков на образование смешанных цинкорганических соединений. Они предложили рассматривать ход взаимодействия эфиров муравьиной кислоты сцинкэтилом, а не с иодцинкэтилом. [c.27]

    Авторы нигде ые указывают весовые количества веществ, используемых ими в синтезах они очень редко приводят доказательства строения полученных ими соединений, даже и в тех случаях, когда ход реакции необычен. Наконец, они слишком часто избирают заранее неудачные пути синтеза, вследствие чего процент неудавшихся — вследствие пространственных труд-ностей> — реакций у них очень велик. Часто к тому же отрицательные результаты работ приведенных авторов объясняются применением ими явно неудачных технических приемов синтеза. Вполне понятно из рассмотрения многочисленных нриводивших-ся выше примеров нормального и аномального протекания магнийорганического синтеза, что 4-бромгептан, взаимодействуя с эфиром муравьиной кислоты, дал не вторичный спирт дипро-Ш1л-4,6-нонанол-5, а первичный 2-пропилпентаыол-1 [c.293]

    Взаимодействием магнийбромпиррола с эфиром муравьиной "кислоты получается а-пирролальдегид (В. В. Челинцев и А. П. Терентьев), твердое вещество с темп, плавл. 50 °С  [c.586]

    Синтез вторичных и третичных спиртов. Взаимодействие сложных эфиров с магнийорганическими соединениями является методом сяятеза вторичных и третичных спиртов лри применении этилового эфира муравьиной кислоты (этилформиата) образуются вторичные спирты (уравнение I) при применении эфиров всех других кислот — третичные спнрты (уравнение II)  [c.269]

    Альдегид 9-фенантренкарбонозой кислоты был получен по методу Зонна и Мюллера, исходя из хлорангидрида этой кислоты восстановлением указанного хлорангидрида по методу Розенмунда исходя яз цианистого водорода и фенантрена по методу Гаттермана взаимодействием бромистого 9-фенантрилмагния с этиловым эфиром муравьиной кислоты . Приведенная выше пропись представляет собой видоизменение способа, который разработали Миллер и Бахман - Метод с использованием магнийорганических соединений был применен также и другими авторами  [c.25]

    Толуиловый альдегид был получен окислением о-ксилола окислением хлористого или бромистого о-ксилила окислением о-толилкарбинола взаимодействием бромистого о-голилмагния с этиловым эфиром муравьиной кислоты взаимодействием бромистого [c.487]

    Проведите гидролиз соединений, полученных взаимодействием этилового эфира муравьиной кислоты с бромистым изобутилмагнием. [c.32]

    Эфиры насыщенных и ненасыщенных кислот. Как уже отмечалось, при взаимодействии алкенилмагнийгалогенидов с эфирами муравьиной кислоты образуются симметричные а, а -ненасыщенные вторичные спирты диэтиленового ряда (LXXXI). При реакции с другими эфирами насыщенных кислот жирного ряда образуются а, а -ненасыщенные третичные спирты LXXXII [68] (табл. 25). [c.29]

    Эфиры муравьиной кислоты H OOR, содержащие атом водорода при углероде карбоксильной группы, при взаимодействии с реактивом Гриньяра, естественно, образуют вторичные спирты. Эта реакция служит отличным методом получения симметричных вторичных спиртов R HOHR, например  [c.650]

    Взаимодействие сложных эфиров с реактивом Гриньяра. Реакция эфиров муравьиной кислоты с алкил- или арилмагнийгалогенидг -ми дает альдегиды, например  [c.346]

    Синтез альдегидов и нитропарафииов. Неразветвленные карбоновые кислоты превращают в соответствующий а-анион действием реагента в ТГФ в присутствии гексаметилтриамида фосфорной кислоты (I, 195 V, 78—81, а также этот том) как сорастворителя. Образовавшийся анион взаимодействует с этиловым эфиром муравьиной кислоты и после нейтрализации 10%-ной соляной кислотой получается альдегид  [c.150]

    Реагент получают подобно соответствующему трнхлориду (IV, 41) прп взаимодействии пирокатехина с РВг., а затем с бромом. С эфирами муравьиной кислоты ф. образует дпбромметил-алкиловые эфиры [11  [c.490]

    Этиловый эфир (3-ацетилакриловой кислоты с этиловым эфиром муравьиной кислоты при кипячении в присутствии BFg-0(G2H5)2 практически не взаимодействуют [246]. [c.191]

    Напишите реакцию взаимодействия магниАбромэтила со следующими соединениями этиловым эфиром муравьиной кислоты, этилацетатом, хлорангидридом пропионовой кислоты нитрилом уксусной кислоты. [c.38]

    Этот факт положен в основу метода Смита и Брайянта. Сфера применения описанного метода довольно широка. Его используют пе только в присутствии веществ, полностью или частично инертных по отношению к ацетилхлориду (углеводороды, эфиры, слабые третичные амипы, кетоны), но и при наличии спиртов, фенолов, аминов и даже жирных кислот. Объясняется это большим различием в кинетике взаимодействия перечисленных веществ и воды с ацетилхлори-дом. Кроме того, жирные кислоты образуют с ацетилхлоридом достаточно стабильные по отношению к воде смешанные ангидриды, которые при титровании ведут себя аналогично эфирам. Мешают муравьиная кислота, эфиры муравьиной кислоты ниже бутилового, альдегиды, гликоли и глицерин. Б присутствии этих веществ необходима поправка. Чувствительность способа составляет 0,02% HgO. Минимально обнаруживаемое количество воды равно 2 мг. [c.30]

    Формиаты. Сло йкные эфиры муравьиной кислоты можно сравнить с альдегидами они также взаимодействуют с реактивом Гриньяра, образуя вторичные спирты. В качестве примера можно привести синтез ди-н-бутилкар-бинола из н-бутилмагнийбромида и этилформиата (СОП, 2, 193) выход составляет 85%. Поэтому формиаты удобно применять для получения симметричных вторичных спиртов. [c.401]

chem21.info

Сложный эфир - муравьиная кислота

Сложный эфир - муравьиная кислота

Cтраница 2

Сложные эфиры можно рассматривать как производные кислот, у которых водород в гидроксиле замещен на радикал. Однако в сложных эфирах муравьиной кислоты вместо радикала R стоит атом водорода.  [16]

Миллер и сотрудники [34] сообщают о синтезе чередующихся сополимеров диметилкетена и альдегида ( 1: 1) в присутствии диэтилцинка. Найдено, что с диметилкетеном сополимеризуются различные ачьдегиды, включая алифатические, а также сложные эфиры муравьиной кислоты. Таким путем получены кристаллические полиэфиры.  [17]

Ранее считали, что если исходить из этилового эфира кротоновой кислоты, то образуется только ацеталь сложного эфира муравьиной кислоты.  [18]

Для увеличения выхода кетона применяют низкие температуры [1320], ГМФТА в качестве растворителя [1321] и обратный порядок смешения реагентов. Из амидов кетоны получаются с лучшими выходами, но и в этом случае они имеют порядок 10 - 50 %, при комнатной температуре. Сложные эфиры муравьиной кислоты и диалкилформамиды при обработке реактивами Гриньяра приводят к альдегидам с высокими выходами.  [19]

Эти реакции настолько схожи, что обсуждаемое превращение также иногда называют конденсацией Кляй-зена, хотя этот термин в данном случае неудачен. Для проведения реакции требуется довольно сильное основание, например амид или гидрид натрия. Из сложных эфиров муравьиной кислоты ( R H) образуются 3-кетоальдегиды.  [20]

Сложные эфиры можно рассматривать как производные кислот, у которых водород в гидроксиле замещен на радикал. Однако в сложных эфирах муравьиной кислоты вместо радикала R стоит атом водорода.  [21]

Сходство электронных структур окиси углерода и дихлоркарбена должно находить отражение и в сходстве химических свойств, которое действительно обнаружено экспериментально. Известно, что индол вступает в реакцию Реймера-Тимана с образованием 3-индолкарбоксальдегида. Воздействие на анион индола окиси углерода под высоким давлением приводит ( как показывает спектральный анализ в вакуумной инфракрасной области) к тому же альдегиду. Хлороформ взаимодействует с алкоголятами щелочных металлов, образуя ортоформиаты; алкоголяты взаимодействуют с окисью углерода с образованием сложных эфиров муравьиной кислоты. Дальнейшие исследования, несомненно, выявят многочисленные новые интересные аналогии.  [22]

Страницы:      1    2

www.ngpedia.ru

Эфир муравьиной кислоты соединениями - Справочник химика 21

    Эфиры муравьиной кислоты — соединения весьма нестойкие. [c.297]

    Процессы амидирования имеют важное значение в промышленности основного органического и нефтехимического синтеза для производства ряда ценных соединений. Из эфиров муравьиной кислоты, синтезируемых из оксида углерода и спиртов в присутствии основных катализаторов, получают диметилформамид  [c.222]

    Исследования показали, что такие органические соединения, как бутиловый спирт, бутиловый эфир муравьиной кислоты, пар-альдегид, отличаются высокой растворимостью в них масла наряду с низкой растворимостью парафина. [c.76]

    Одним из соединений, изомерных предельной одноосновной кислоте, может быть сложный эфир, при этом по условию задачи исключается эфир муравьиной кислоты. Предположим, что кислоты, и соответственно сложного эфира в смеси содержится по х молей, а атомов углерода в каждой молекуле этих соединений — п. При взаимодействии исходной смеси с раствором бикарбоната (уравнение 1) образуется X молей СОг, а при сожжении всей смеси объем образовавшегося СОг будет равен 2пх (уравнения 2, 3). [c.213]

    Какие соединения образуются при гидролизе а] этилового эфира муравьиной кислоты б) бутилового эфира масляной кислоты в) грег-бутилово-го эфира пропионовой кислоты Напишите уравнения реакций. [c.78]

    Для гидратации олефинов с концевой двойной связью применяют смесь муравьиной кислоты с каталитическими количествами сильной кислоты, например хлорной. Для получения спиртов нужно гидролизовать образующиеся в качестве промежуточных соединений сложные-эфиры муравьиной кислоты. При этом следует ожидать изомеризации, как показано в одном из приведенных ниже примеров. Для гидратации олефинов с разветвленной цепью лучше использовать трифторуксусную, а не муравьиную кислоту [21. При гидратации 2-метилбутена-2, метилциклопентена и метилциклогек-сена выходы спиртов составляют около 45%. Присоединение муравьиной кислоты в сочетании с серной является стереоспецифиче-ским, по крайней мере в некоторых случаях. Так, например, транс- [c.213]

    Из наиболее обычных сложных эфиров, не имеющих активного водорода, были успешно применены в качестве ацилирующих эфиров три соединения, а ил нно этиловый эфир муравьиной кислоты, этиловый эфир бензойной кислоты и ДИЭТИЛОВЫЙ эфир щавелевой кнслоты. Реакции, про- [c.350]

    Взаимодействие этиленовых соединений с эфирами муравьиной кислоты  [c.116]

    ТИПОВ соединений в соответствующих условиях можно получить кетоны с приемлемым выходом. Лучшие результаты были получены при добавлении литийорганического соединения к избытку ацилпроизводного при низкой температуре. Некоторые примеры приведены в табл. 6.2, а типичная реакция с ангидридом описана ниже. Табл. 6.2 включает также примеры родственных реакций. В случае эфиров муравьиной кислоты продуктом является альдегид (пример подробно описан)  [c.83]

    Из простейших сложных эфиров наименее токсичными являются эфиры муравьиной кислоты токсичность несколько усиливается при переходе от ацетатов к пропионатам и т. д. В пределах данного ряда токсичность увеличивается с ростом молекулярного веса и температуры кипения. Исключение составляют метильные производные так, например, метиловые эфиры муравьиной и УКСУСНОЙ кислот более токсичны, чем соответствующие этиловые эфиры. Бензиловые эфиры жирных кислот более токсичны, чем соответствующие алифатические соединения. [c.374]

    Вторичные спирты могут быть также получены действием магнийорганических соединений на эфиры муравьиной кислоты [c.103]

    Реакция между магнийорганическими соединениями и эфирами муравьиной кислоты протекает таким же путем, но про-дуктом реакции являются при этом вторичные спирты [c.317]

    Взаимное расположение атомов в молекулах соединений А. Кекуле представлял как их прилегание друг к другу. Это он проиллюстрировал схематическими изображениями конституции, в которых атомность (основность) изображена кружками, соединенными друг с другом. Одновременно А. Кекуле привел также случаи прямого прилегания углеродных атомов друг к другу, например при изображении метилового эфира муравьиной кислоты (он высказал идею о возможности существования двойной связи между атомами углерода).,  [c.139]

    Хлорзамещенные хлоругольные эфиры можно получать также хлорированием эфиров муравьиной кислоты . Так, в муравьинометиловом эфире, Н СО О СНз, получающемся этерификацией муравьиной кислоты, при хлорировании сначала замещается хлором водород у карбонила, а затем уже в метильной группе, причем получается смесь трех перечисленных выше хлорзамещенных хлоругольных эфиров. Этот способ получения хлоругольных эфиров вполне оправдывает другое название этих соединений хлоругольные эфиры называют также хлормуравьиными. [c.64]

    Синтез вторичных и третичных спиртов. Взаимодействие сложных эфиров с магнийорганическими соединениями является методом синтеза вторичных и третичных спиртов при применении этилового эфира муравьиной кислоты (этилформиата) образуются вторичные спирты (уравне- [c.52]

    Так, например, если этиловый эфир муравьиной кислоты (этилформиат) вводить в реакцию с магнийорганическим соединением при охлаждении реакционной смеси твердой углекислотой и при обратном порядке введения реагентов (эфирный раствор магнийорганического соединения приливается к эфирному раствору этилформиата), то реакция останавливается на стадии образования альдегида  [c.55]

    Однако проверка зависимости интенсивности поглощения от концентрации для эфиров муравьиной кислоты и эфиров других кислот, начиная от уксусной, показала, что при равной молярной концентрации растворов оптическая плотность гидроксамовых соединений муравьиной кислоты значительно меньше, чем для эфиров других кислот. При графическом изображении за- [c.228]

    Авторы нигде ые указывают весовые количества веществ, используемых ими в синтезах они очень редко приводят доказательства строения полученных ими соединений, даже и в тех случаях, когда ход реакции необычен. Наконец, они слишком часто избирают заранее неудачные пути синтеза, вследствие чего процент неудавшихся — вследствие пространственных труд-ностей> — реакций у них очень велик. Часто к тому же отрицательные результаты работ приведенных авторов объясняются применением ими явно неудачных технических приемов синтеза. Вполне понятно из рассмотрения многочисленных нриводивших-ся выше примеров нормального и аномального протекания магнийорганического синтеза, что 4-бромгептан, взаимодействуя с эфиром муравьиной кислоты, дал не вторичный спирт дипро-Ш1л-4,6-нонанол-5, а первичный 2-пропилпентаыол-1 [c.293]

    После установления структурных формул метилового спирта СН3ОН и муравьиной кислоты НСООН можно приступить к установлению структурной формулы метилового эфира муравьиной кислоты, который содержит на одну молекулу Н2О меньше, чем оба продукта его расщепления вместе взятые. Как в метиловом спирте, так и в муравьиной кислоте имеются гидроксильные группы, отсутствующие в метиловом эфире муравьиной кислоты, поэтому формулу этого соединения можно построить, исходя из предположения, что отщепление воды происходит за счет ОН-групп метилового спирта и муравьиной кислоты  [c.17]

    Для получения спиртов очень часто используют реакцию взаимодействия алкилмагниевых солей (раньше применяли также цинкдиалкилы) с альдегидами, кетонами или эфирами кислот. При этом из алкилмагниевых солей и указанных соединений образуются сначала продукты присоединения, которые затем при действии воды распадаются на спирт и основную соль магния. Из альдегидов и эфиров муравьиной кислоты образуются вторичные спирты, а из кетонов и эфиров всех других карбоновых кислот — третичные  [c.111]

    Проведите гидролиз соединений, полученных взаимодействием этилового эфира муравьиной кислоты с бромистым этилмагнием, иодистым изопропилмагнием, бромистым изобутилмагнием. [c.76]

    Наиболее широко используются металлоорганические соединения — R—Li, R—Na, R—MeHal(Me — Mg, Zn, d), восстанавливающие альдегиды, кетоны и производные кислот, не содержащие подвижный атом водорода. На основе формальдегида получают первичные спирты другие альдегиды и эфиры муравьиной кислоты образуют вторичные, кетоны и сложные эфиры — третичные спирты  [c.204]

    Диапазон применимости этого метода такой же, как и реакции 10-22. И хотя ангидриды немного менее реакционноспособны, чем ацилгалогениды, их часто используют для получения сложных эфиров. В качестве катализаторов применяют кислоты, кислоты Льюиса и основания, но наиболее часто — пиридин. Катализ пиридином относится к нуклеофильному типу (см. реакцию 10-10). 4-(М,К-Диметиламино) пиридин — более активный катализатор, чем пиридин, его можно использовать в тех случаях, когда последний малоэффективен (см. обзоры [520]). Муравьиный ангидрид — неустойчивое соединение, но эфиры муравьиной кислоты можно приготовить, действуя на спирты [521] или фенолы [522] смешанным ангидридом муравьиной и уксусной кислоты. Реакция циклических ангидридов приводит к моноэтерифицированным дикарбоновым кислотам, например  [c.126]

    Эфироальдегиды (с ответственно кетоальдегиды),. получаемые конденсацией эфиров муравьиной кислоты с эфирами карбоновых кислот или кетонами, сильно енолизованы и существуют в виде а-оксиметиленовых соединений, например [c.159]

    Техническое значение имеет прежде всего ацетоуксусный эфир, производные которого (например, пиразолоны) используются для синтеза азо красителей (см. табл. 143) и лекарственных препаратов (см, разд. Г, 7.1.5.2). Сложноэфирной конденсацией диэтил ацетоуксусного эфира с эфиром муравьиной кислоты и последующим действием аммиака на образовавшееся оксиметиленовое соединение получают важное снотворное средство — бенедорм (перседон) [c.164]

    Синтез вторичных и третичных спиртов. Взаимодействие сложных эфиров с магнийорганическими соединениями является методом сяятеза вторичных и третичных спиртов лри применении этилового эфира муравьиной кислоты (этилформиата) образуются вторичные спирты (уравнение I) при применении эфиров всех других кислот — третичные спнрты (уравнение II)  [c.269]

    Альдегид 9-фенантренкарбонозой кислоты был получен по методу Зонна и Мюллера, исходя из хлорангидрида этой кислоты восстановлением указанного хлорангидрида по методу Розенмунда исходя яз цианистого водорода и фенантрена по методу Гаттермана взаимодействием бромистого 9-фенантрилмагния с этиловым эфиром муравьиной кислоты . Приведенная выше пропись представляет собой видоизменение способа, который разработали Миллер и Бахман - Метод с использованием магнийорганических соединений был применен также и другими авторами  [c.25]

    ФОРМИХТЫ, соли и эфиры муравьиной кислоты. ФОРМИЛЙРОВАНИЕ, введение формильной группы СНО в молекулу орг. (реже неорганических) соединений. В зависимости от того, к какому атому в субстрате присоединяется формильная группа, различают С-, N-, О- и S-Ф. С-Ф.- один из важнейших методов получения алгдегтадов. Ф. гетероатомов применяют для защиты фупп NH , ОН, SH для получения формамида, эфиров муравьиной и тиомуравьиной к-т для проведения р-ций циклизации. [c.116]

    Проведите гидролиз соединений, полученных взаимодействием этилового эфира муравьиной кислоты с бромистым изобутилмагнием. [c.32]

    Вопреки распространенному мнению [76], что в реакцию Кляйзена с метилформиатом в присутствии металлического натрия могут вступать только те поли-гидроксиацетофеноны, в которых защищены все гидроксигруппы кроме 2-ОН, участвующей в образовании пиронового цикла, авторам работ [58, 63] удалось ввести незащищенные а-гетарил-2,4-дигидроксиацетофеноиы 2 в реакцию со сложными эфирами муравьиной кислоты в присутствии трет-бутилата натрия и после обработки реакционной смеси 1%-ным раствором соляной кислоты получить соответствующие 7-гидрокси-З-гетарилхромоны 9, однако выходы продуктов оказались несколько ниже, чем в случае использования в качестве исходных соединений кетонов с защищенной 4-гидроксигруппой. [c.506]

    N. N-Дизaмeщeнныe амиды, а) Формамиды. Как известно из работ Бюво, при действии магнийорганических соединений на замещенные формамиды при нагревании в присутствии избытка магния может образоваться альдегид или третичный амин. Образование вторичного спирта наблюдается редко и всегда происходит медленно. Это отличается от реакции с алкиловыми эфирами муравьиной кислоты и объясняется стойкостью реакционного комплекса, который на холоду при действии воды превращается в альдегид, а при нагревании с избытком реактива Гриньяра — в амин  [c.31]

    Общий метод синтеза этих соединений состоит в ацилировании кетонов эфирами муравьиной кислоты (стр. 116). Они могут быть также пол ены путем ацилирования альдегидов последний метод был успешно применен для ацилирования дифенил-ацетальдегида [74аЛ  [c.139]

    Наиболее важны синтезы соединений, нашедших применение как красители. В реакции обычно участвуют две молекулы фенола и источник одноуглеродного фрагмента, папример эфир муравьиной кислоты (схема 49) или формальдегид (схема 50). Промежуточный ксапгеп, образующийся при реакции с формальдегидом, [c.37]

    Следует избегать избытка реактива Гриньяра в противном случае образуются вторичные спирты. Поэтому на практике раствор магнийор-ганического соединения прибавляют по каплям к эфиру муравьиной кислоты. Для этих же целей можно использовать и ортоэфиры муравьиной кислоты в таком случае получаются ацетали [см. ниже, реакции альдегидов и кетонов, реакция (1)], которые далее гидролизуются до альдегидов  [c.346]

    Формилацетон (3-оксобутаналь) образуется в результате конденсации Кляйзена ацетона с эфирами муравьиной кислоты. Это жидкое соединение (т. кип. 100 °С), почти полностью находящееся в енольной форме. Оно конденсируется до 1,3,5-триацетилбензола  [c.372]

    Так, в результате реакции между эфирами муравьиной кислоты и магнийбромэтилом получается диэтилкарбинол (СаНб)2СНОН с выходом 73%. При этой реакции на первоначально образовавшееся двойное соединение действует вторая молекула магниевого соединения [c.103]

    Можно принять и другой механизм этих реакций, по которому промежуточно образуются альдегиды (если исходить из эфира муравьиной кислоты) или кетоны (если исходными веществами являются эфиры других кислот), легко вст>т1аю-щие далее в реакцию со второй молекулой магнийорганического соединения  [c.53]

    Побочным продуктом алкилирования бензола спиртами является вода, которая способна изменить кислотность исходного цеолита. Алкилирующими агентами могут быть алкилгалогениды или эфиры. В обзоре Венуто и Ландиса [1] описан особый случай, когда бензол алкилируется хлорметиловым эфиром муравьиной кислоты [реакция (5)]. Возможность образования карбониевых ионов из спиртов и алкилгалогенидов, а также алкилирование карбонильными соединениями обсуждаются далее. [c.131]

chem21.info

Муравьиная сложные эфиры - Справочник химика 21

    Напишите структурные формулы сложных эфиров, образующихся из а) уксусной кислоты и 2-пропанола б) уксусной кислоты и 1-пропанола в) муравьиной кислоты и этанола. [c.439]

    Границы применения положительную реакцию дают муравьиная и молочная кислоты, алифатические нитросоединения. Перечисляемые ниже сложные эфиры не дают гидроксамовой реакции эфиры угольной и хлоругольной кислот, уретаны, эфиры сульфокислот, эфиры неорганических кислот. Фенолы не мешают реакции. [c.304]

    Некоторые ароматические углеводороды, спирты, жирные кислоты, сложные эфиры, галоидпроизводные (бензола, толуола, 0-, м- и п-ксилолов), декалин, диизобутилен, этанол, ацетон, муравьиная кислота, пиперидин, аргон, иод, С5з и т. д. [c.89]

    Сложные эфиры получают при взаимодействии спирта с кислотой. Названия сложных эфиров формируют по тем кислотам и спиртам, которые принимают участие в образовании пх молекул. Так, сложный эфир, образованный муравьиной кислотой и метиловым спиртом, будет называться [c.345]

    Многие сложные эфиры обладают приятным фруктовым запахом. Так, муравьиноамиловый эфир обладает запахом вишни, муравьино- [c.329]

    Без катализаторов гидролиз многих эфиров протекает очень медленно, иногда в течение нескольких лет, хотя некоторые сложные эфиры, например метиловый и этиловый эфиры муравьиной кислоты, метиловый и этиловый эфиры щавелевой кислоты, эфиры а-окси- и низших а-аминокислот и др., гидролизуются очень быстро. Скорость реакции значительно увеличивается добавками [c.529]

    Выход сложных эфиров зависит также от характера карбоновых кислот, например, увеличение константы диссоциации кислоты облегчает присоединение ее по С = С-связи. Легче всего идут реакции с муравьиной и уксусной кислотами. Двухосновные карбоновые кислоты менее активны в реакциях образования нормальных эфиров, чем одноосновные, причем активность их снижается с удлинением углеродной цепи. Ароматические кислоты активнее, чем алифатические. Скорость реакции взаимодействия карбоновых кислот с различными олефинами зависит помимо строения кислоты от времени, скорости размешивания, взаимной растворимости, растворителя, материала аппаратуры и т. д. [c.664]

    Составьте структурные формулы сложных эфиров этилового эфира муравьиной кислоты, этилового эфира уксусной кислоты, метилового эфира пропионовой кислоты, метилацетата, метилформиата, бутилаце-тата. [c.69]

    Для разделения нафтеновых и парафиновых углеводородов применяют сложные эфиры. Так например при разделении нафтенов и парафинов керосиновых фракций можно использовать метиловый эфир муравьиной кислоты, [c.14]

    Чистая муравьиная кислота представляет собой бесцветную жидкость с едким запахом, т. пл. 8°С, т. кип. 100 °С, смешивается с водой. Ее соли, сложные эфиры и амиды — обычные производные (R—NH—СНО — не альдегид, а амид муравьиной кислоты). Ангидрид и хлорангидрид муравьиной кислоты известны, но крайне нестабильны при обычных методах синтеза получается монооксид углерода. Теплая концентрированная серная кислота легко дегидратирует муравьиную кислоту, давая монооксид углерода  [c.148]

    Одним из соединений, изомерных предельной одноосновной кислоте, может быть сложный эфир, при этом по условию задачи исключается эфир муравьиной кислоты. Предположим, что кислоты, и соответственно сложного эфира в смеси содержится по х молей, а атомов углерода в каждой молекуле этих соединений — п. При взаимодействии исходной смеси с раствором бикарбоната (уравнение 1) образуется X молей СОг, а при сожжении всей смеси объем образовавшегося СОг будет равен 2пх (уравнения 2, 3). [c.213]

    Муравьиная кислота со спиртом А образует сложный эфир — соединение Б (уравнение 1). 23 г муравьиной кислоты составляют 0,5 моля. Поскольку выход сложного эфира Б по условию задачи — 80%, то [c.214]

    Новые методы выделения изобутилена из различных углеводородных фракций С4 так же, как сернокислотный и на ионообменных смолах, основаны на повышенной реакционной способности третичного атома углерода. Изобутилен способен легко образовывать сложные эфиры с органическими кислотами. Это свойство изобутилена используется при выделении его с помощью муравьиной кислоты  [c.224]

    Эти ортоэфиры устойчивы в щелочной среде, но в присутствии кислоты быстро реагируют с водой, давая обычный сложный эфир муравьиной кислоты н+ [c.67]

    При нагревании смеси -муравьиной и уксусной кислот массой 13,6 г с избытком этанола в присутствии концентрированной серной кислоты получили смесь сложных эфиров массой 20,6 г. Какая масса муравьиной кислоты вступила в реакцию Ответ 4,6 г. [c.283]

    Общая формула сложных эфиров н с—О—R, где К и К —углеводородные радикалы. Сложные эфиры можно рассматривать как производные кислот, у которых водород в гидроксиле замещен на радикал. Однако в сложных эфирах муравьиной кислоты вместо радикала К стоит атом водорода. [c.329]

    Присутствуют также и соответствующие спирты, поскольку альдегиды медленно гидрогенизуются. Основными причинами низких выходов являются, однако, конденсация альдегидов и спиртов (кротонизация, ацетализация) [20] и образование сложных эфиров муравьиной и карбоновой кислот по реакции [c.195]

    При циркуляционной смазке, когда одна и та же порция масла вновь и вновь прокачивается через нагретые узлы трения и находится там в тонком слое, в масле постепенно накапливаются самые разнообразные продукты окисления, окислительной полимеризации и конденсации. К ним относятся жирные и нафтеновые кислоты (от муравьиной до высокомолекулярных с числом углеродных атомов выше 20), оксикислоты, непредельные кислоты, фенолы, альдегиды, кетоны, сложные эфиры (лаптопы, лактиды, эстолиды) и смолистые высокомолекулярные вещества (асфальтены, асфальтогеновые кислоты и карбены). Образование и накопление всех этих веществ вызывает весьма вредные последствия усиление коррозии, выпадение осадков (шлама), нагаро- и лакообразование. [c.193]

    Аллиловый спирт находится в подсмольной воде, получающейся при сухой перегонке дерева. Он может быть получен нагреванием глицерина с муравьиной или щавелевой кислотой. При этом промежуточно образуется сложный эфир, который при нагревании разлагается с выделением углекислого газа  [c.166]

    Выделить жирные кислоты из реакционной смеси довольно трудно. Существует несколько епссобов. Сначала экстрагируют теплой водой низшие кислоты (муравьиную, уксусную, проиионовую), затем омыляют оставшиеся кислоты и гидролизуют сложные эфиры и лактогы щелочами под давлением при 150 °С. Из продуктов гидролиза Еыделяют отстаиванием и возвращают в сырье неомыляемую фракцию — верхний слой нижний представляет собой водный раствор мыл, в котором кроме натровых солей жирных кислот содержатся соли оксикислот, а также спирты, кетоны и растворенные парафиновые углеводороды. При нагревании раствора (300—350°С и 80—120 ат) в трубчатой печи происходит дегидратация оксикислот с образованием ненасыщенных кислот [c.155]

    Например, продуктами гидроформилирования пропена, кроме С -альдегидов и спиртов (н- и зо-бутилового), являются С5-СОЛИ или эфиры муравьиной кислоты, Св-сложные эфиры, альдегиды или спирты, Св-простые эфиры, Сд- эфироальдегиды и эфироспирты и, возможно, (З з-ацетали, образованные путем следующих реакций  [c.195]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    Согласно Баруэллу [13], пунктом первоначальной атаки кислорода является положение 2 в цепи парафина затем атаке подвергается атом углерода в положении 3 и т. д. по направлению к середине цепи. Двуосновные кислоты образуются только в виде следов. Из низших кислот в основном получаются муравьиная и уксусная. Одновременно (или в последующей стадии реакции) кислород воздействует на Другие части молекулы, а поэтому наряду с простыми жирными кислотами с длинной цепью образуются также кето- и оксикислоты, лактоны и сложные эфиры оксикислот. Первые ступени окисления можно, таким образом, представить в виде следующей схемы  [c.73]

    Карбоновые кислоты встречаются в природе в свободном состоянии (например, муравьиная кислота — в крапиве, фруктах изо-валериановая — в валериановом корне и т. д.), а также в виде их производных, в основном, в виде сложных эфиров. Однако основным псточником получения карбоновых кислот является органический синтез. Их можно получать следующими способами. [c.141]

    Наиболее широко используются металлоорганические соединения — R—Li, R—Na, R—MeHal(Me — Mg, Zn, d), восстанавливающие альдегиды, кетоны и производные кислот, не содержащие подвижный атом водорода. На основе формальдегида получают первичные спирты другие альдегиды и эфиры муравьиной кислоты образуют вторичные, кетоны и сложные эфиры — третичные спирты  [c.204]

    Декарбонилирование сложных эфиров и карбоновых кислот— довольно специфическая реакция. Таким образом можно декарбонилировать только некоторые кислоты муравьиную, щавелевую, триарилуксусную, а-гидрокси- и а-кетокислоты. Больщинство, но не все а-кетоэфиры можно декарбонилировать простым нагреванием. О механизмах этих реакций известно немного (см., например, [469]). Эти реакции включены в настоящую главу, так как, по крайней мере в некоторых случаях, был продемонстрирован механизм нуклеофильного замещения [470]. [c.119]

    Диапазон применимости этого метода такой же, как и реакции 10-22. И хотя ангидриды немного менее реакционноспособны, чем ацилгалогениды, их часто используют для получения сложных эфиров. В качестве катализаторов применяют кислоты, кислоты Льюиса и основания, но наиболее часто — пиридин. Катализ пиридином относится к нуклеофильному типу (см. реакцию 10-10). 4-(М,К-Диметиламино) пиридин — более активный катализатор, чем пиридин, его можно использовать в тех случаях, когда последний малоэффективен (см. обзоры [520]). Муравьиный ангидрид — неустойчивое соединение, но эфиры муравьиной кислоты можно приготовить, действуя на спирты [521] или фенолы [522] смешанным ангидридом муравьиной и уксусной кислоты. Реакция циклических ангидридов приводит к моноэтерифицированным дикарбоновым кислотам, например  [c.126]

    При обработке сложных эфиров кетонами 3-дикетоны получаются по реакции, которая по существу не отличается от реакции 10-111. Эти реакции настолько схожи, что обсуждаемое превращение также иногда называют конденсацией Кляйзена, хотя этот термин в данном случае неудачен. Для проведения реакции требуется довольно сильное основание, например амид или гидрид натрия. Из сложных эфиров муравьиной кислоты (Р = Н) образуются fi-кeтoaльдeгиды. Этилкарбонат дает р-кетоэфиры  [c.235]

    Метановая (муравьиная) кислота НСО2Н — единственная в своем роде карбоновая кислота, не имеющая ни алкильной, ни арильной групп, соединенных с карбоксилом. Получается либо при окислении метанола или формальдегида, либо путем гидролиза сложных эфиров, циановодородной кислоты (нитрила муравьиной кислоты), а также хлороформа (разд. 4.2.1). В промышленности муравьиную кислоту получают каталитической гидратацией монооксида углерода  [c.147]

    Сложные эфиры эфиры азотистой, азотной, серной, хлорсульфоновой, муравьиной, уксусной, пропионовой, акриловой, метакриловой кислот и их г а л оге нопр оизводные. [c.166]

    В круглодонную колбу емкостью 500 мл с обратным холодильником ВЕОДят 57,5 г (1 моль) 80%-ной муравьиной кислоты, 92 г (2 моля) бсолЮ -ного этилового спир та и 41 г концентрированной серной кислоты (примечание 1) смесь нагревают на водяной бане до кипения в течение Ю часов. Обратный холодильник заменяют дефлегматором, соединенным с холодильником Либиха, и отгоняют фракцию, кипящую при 53—54° (примечание 2). Дистиллят вливают в делительную воронку и после встряхивания с 50 мл насыщенного раствора бикарбоната натрия отделяют нижний водный слой. К оставшемуся в делительной воронке верхнему слою сложного эфира приливают 500 мл насыщенного раствора поваренной соли, сильно встряхивают и после разделения слоев отделяют нижний слой раствора соли. Верхний, эфирный слой сушат над 5—6 г безводного сульфата натрия. После нескольких часов сушки жидкость фильтруют и перегоняют из перегонной колбы емкостью 200 мл, нагревая колбу на водяной бане (примечание 3). [c.357]

    Смесь 135 мл (2,3 моля) этилового спирта, 124 г (2,3 моля) 85%-ной муравьиной кислоты и 20 г хлористого кальция помещают в круглодонную колбу емкостью 500 мл, снабженную. колонкой Вигре, и медленно нагревают на водяной бане. Вскоре начинает отгоняться этиловый эфир муравьиной кислоты. Температуру водяной бани регулируг т так, чтобы обеспечить медленную и равномерную отгонку образующегося сложного эфира. Последний собирают в пределах 53—55 (примечание 2). Для дальнейшей очистки сырой продукт перегоняют над 20 г безводного карбоната калия, собирая фракцию, кипящую при 53—54°. [c.358]

chem21.info

Эфиры муравьиной кислоты сложные, присоединение к олефинам

Химия и химическая технология

Статьи Рисунки Таблицы О сайте Реклама     Для гидратации олефинов с концевой двойной связью применяют смесь муравьиной кислоты с каталитическими количествами сильной кислоты, например хлорной. Для получения спиртов нужно гидролизовать образующиеся в качестве промежуточных соединений сложные-эфиры муравьиной кислоты. При этом следует ожидать изомеризации, как показано в одном из приведенных ниже примеров. Для гидратации олефинов с разветвленной цепью лучше использовать трифторуксусную, а не муравьиную кислоту [21. При гидратации 2-метилбутена-2, метилциклопентена и метилциклогек-сена выходы спиртов составляют около 45%. Присоединение муравьиной кислоты в сочетании с серной является стереоспецифиче-ским, по крайней мере в некоторых случаях. Так, например, транс- [c.213]     Выход сложных эфиров зависит также от характера карбоновых кислот, например, увеличение константы диссоциации кислоты облегчает присоединение ее по С = С-связи. Легче всего идут реакции с муравьиной и уксусной кислотами. Двухосновные карбоновые кислоты менее активны в реакциях образования нормальных эфиров, чем одноосновные, причем активность их снижается с удлинением углеродной цепи. Ароматические кислоты активнее, чем алифатические. Скорость реакции взаимодействия карбоновых кислот с различными олефинами зависит помимо строения кислоты от времени, скорости размешивания, взаимной растворимости, растворителя, материала аппаратуры и т. д. [c.664] Свободные радикалы в растворе (1960) -- [ c.230 ]

Смотрите так же термины и статьи:

Кислоты при присоединении олефинов

Муравьиная кислота

Эфир муравьиной кислоты кислот

© 2018 chem21.info Реклама на сайте

chem21.info