Экология СПРАВОЧНИК. Сложные эфиры акриловой кислоты


Акриловая кислота сложные эфиры - Справочник химика 21

    Полиакрилаты—продукты полимеризации акриловой или мет-акриловой кислот, их эфиров, галогенпроизводных, нитрилов и т. д. [50]. Способность акриловой кислоты полимеризоваться была установлена еще в 1843 г. Однако систематические исследования полимерных эфиров акриловой кислоты были осуществлены значительно позже. Полученные прозрачные полимеры стали известны под названием акрилоидов. Акриловая кислота при этерификации различными спиртами дает разнообразные сложные эфиры, которые могут быть затем полимеризованы. Следует отметить, что с повышением молекулярного веса спиртового радикала полимеры акриловых эфиров становятся все более мягкими и эластичными. [c.617]     Сополимеры виниловых сложных и простых эфиров и кетонов, стирола, акриловой кислоты или эфиров акриловой кислоты с малеиновым ангидридом [c.189]

    Важной промышленной реакцией является конденсация ацетилена с карбонильными соединениями. В случае формальдегида образуются двухатомные спирты, дающие далее дикарбоновые кислоты, а в случае окиси углерода — акриловая кислота и сложные акриловые эфиры. [c.119]

    Если воду заменить спиртом, то образуются сложные эфиры акриловой кислоты, которые широко используют при получении макромолекулярных соединений  [c.222]

    Альдегид акролеин является продуктом окисления алли-лового спирта СН2=СНСН,ОН. При окислении акролеина образуется акриловая кислота. Добавление пропанола переводит кислоту в сложный эфир. Составьте уравнения реакций. [c.224]

    Из ЭТИХ кислот наибольшее значение имеют две акриловая и метакриловая, которые образуют сложные эфиры, широко применяемые в технике для получения ценных пластических масс. [c.155]

    Плотность полимера 1,19 г/см . Молекулярная масса зависит от метода и условий полимеризации и колеблется в пределах 35 000—85 000. Растворяется в сложных эфирах, спиртах, ароматических углеводородах и др. Вследствие низкой термостойкости применяется в сравнительно небольших количествах для изготовления лаков, клеев, искусственной кожи и т. п. Большее значение имеют сополимеры винилацетата с хлористым винилом и эфирами акриловой кислоты. Большие количества поливинилацетата перерабатываются в поливиниловый спирт. [c.471]

    Большое техническое значение имеют также непредельные одноосновные кислоты. Первые представители этого гомологического ряда — акриловая кислота СНа СН—СООН и метакриловая кислота— СН2=С(СНз)—СООН важны в производстве полимерных материалов. Такие производные этих кислот, как сложные эфиры, нитрилы, служат мономерами при производстве органического стекла, синтетических волокон, некоторых видов синтетического каучука. Особое значение имеет нитрил акриловой кислоты (акрилонитрил), который получают в промышленности несколькими путями  [c.202]

    Акриловая кислота СН-2==СН—СООН и метакриловая СН.2=С(СНз)—СООН важны при производстве полимерных материалов их сложные эфиры служат мономерами при производстве органического стекла, синтетических волокон, некоторых видов синтетического каучука. [c.307]

    Этот метод синтеза пригоден для синтеза алкиловых эфиров высших жирных кислот из жиров, масел и восков [114, 115]. Путем такого обмена удобно получать и многие другие сложные эфиры, например эфиры акриловой [113] и -у-диэтиламино-а-фенилмасляной [112] кислот. Наиболее важным эфиром енола, применяемым для получения сложных эфиров, является изопропенилацетат. Этот реагент легко доступен, и из него можно получать различные сложные эфиры с высоким выходом в результате обмена со спиртом в присутствии кислых катализаторов [c.296]

    Они хорошо совмещаются с пластификаторами типа сложных эфиров фталевой и адипиновой кислот. Покрытие можно также пластифицировать сополимеризацией акриловой и мет- [c.53]

    Выходы сложных эфиров акриловой кислоты и первичных спиртов бывают непостоянны вследствие случайных потерь в результате образования полимеров однако обычно они колеблются в пределах 85—99%. Некоторые из вторичных спиртов реагируют очень медленно, другие—быстро. Описанный метод был применен более чем к пятидесяти спиртам. Ряд спиртов, а таюке и выходы соответствующих эфиров акриловой кислоты (в процентах) приведены ниже этиловый — 99 изопропиловый — 37 н-амиловый—87 изоамиловый — 95 н-гексиловый — 99 4-метил-2-амиловый — 95  [c.118]

    Полиакрилаты — полимеры акриловой кислоты или ее производных сложных эфиров, нитрилов, амидов, а также продукты сополимеризации акриловых производных друг с другом или с другими ненасыщенными углеводородами  [c.102]

    Акриловая кислота легко полимеризуется, на чем основано ее использование в промышленности полимерных материалов. Наиболее важными являются производные акриловой кислоты — сложные эфиры, амид, нитрил (гл. ХХХ1П. К-4). [c.552]

    Продукты полимеризации производных акриловой и метакриловой кислот (сложных эфиров, нитрилов, амидов и т. д.), а также продукты сополимеризации акриловых производных друг с другом и с другими ненасыщенными соединениями, так называемые полиакрилаты, представляют собой бесцветные, прозрачные, светостойкие, твердые или мягкие и каучукоподобные материалы. [c.346]

    Сложные эфиры этленкарбоновых кислот. Сложные эфиры акриловой и метакриловой кислот весьма активны и являются важным сырьем для получения многих искусственных смол и пластических масс. [c.112]

    Акриловые полимеры. Сложные эфиры акриловой и метакриловой кислот легко полпмеризуются но механизму свободных радикалов, давая продукты тина [c.103]

    Полимеры на основе мчогоосновных кислот и многоатомных спиртов, полимеры и сополимеры на основе эфиров акриловой и метакриловой кислот, сложные эфиры целлюлозы [c.196]

    Хлордекалии, содержащий около 56% С1, обладает относительно большой растворяющей способностью. Он растворяет нитрат целлюлозы А, хлорированный поливинилхлорид, сополимеры винилхлорида и эфиров акриловой кислоты, винилизобутиловый эфир, поливинилацетали, полиметакрилаты, сложные поливиниловые эфиры. Однако он не растворяет нитрат целлюлозы Е, ацетат целлюлозы, полиакрилаты и полиамиды. [c.565]

    Однако более ван но его значение как промежуточного продукта для синтеза других веществ. При полимеризации аллилового спирта образуется водорастворимый полимерный спирт, который может быть использован для синтеза сложных полиэфиров (особое значение приобрел диаллнлфталат). Полимер диаллилфталата пригоден для получения тер.ио- и дуропластов. Он используется также для производства лаков и пр. Находят применение и другие сложные эфиры эфиры циануровой, малеиновой, фумаровой и акриловой кислот. [c.192]

    Натуральный каучук в виде эмульсии или латекса присоединяет акрилонитрил, сложные эфиры акриловой кислоты, стирол и другие полимеризующиеся вещества. Имеются и другие реакции с веществами, дающими продукты присоединения или замещения, но здесь они не рассматриваются (сообщения и рефераты о них см. в списке литературы, а также и в других журналах). Если эти продукты найдут практическое или теоретическое применение, то это будет отран ено в литературе. Природные и многие синтетические каучуки дешевые или станут со временем дешевыми, поэтому их химические производные могут представлять как теоретический, так и практический интерес. [c.225]

    За последнее время в качестве вязкостных присадок широкое распространение получили полимеры сложных эфиров акриловой и метакриловой кислот и одноатомных спиртов Се — ie, имеющие молекулярную массу 5000—20 000 [84, с. 46 159]  [c.140]

    Оксо-реакйия не ограничивается олефииовыми углеводородами она может быть проведена, хотя и с б.)льшим трудом, также и с кислотами, кетонами, сложными эфирами и т. д. Так, например, к акриловой кислоте в водном растворе без водорода MOHIHO присоединить по двойной связи СО НоО цри 115° п давлении 100 атм, в результате чего получается янтарная кислота с выходом 40—45%  [c.208]

    С возрастанием размера спиртового радикала в полимерных сложных эфирах указанных кислот и одноатомных спиртов снижается температура размягчения полимера, т. е. температура, при которой полимер становится гибким. При одинаковом размере спиртового радикала полимеры эфиров акриловой кислоты отличаются более низкими температурами размягчения по сравнению с полимерными эфирами метакриловой кислоты  [c.342]

    Первый отечественный полимерный депрессатор ДН-1, рекомендованный к производству, был создан НИОХ СО АН СССР совместно с ВНИИСПТнефтью. Данная присадка представляла собой сополимер, изготовленный на основе сложных эфиров акриловой и метакриловой кислот и высших насыщенных спиртов. Е1 1976 г. успешно прошли приемочные испытания его опытной партии, изготовленной на основе высших спиртов, полученных из синтетических жирных кислот (СЖК). По предварительным расчетам ВНИИПАВ, себестоимость депрессатора ДН-1 на основе высших спиртов из СЖК составляла 800 руб/т. [c.140]

    Сложные эфиры акриловой и метакриловой кислот имеют строение  [c.156]

    Большое значение имеют полимеры эфиров акриловой и метакриловой кислот преимущественно с низшими спиртами — метиловым, этиловым и бутиловым (стр. 183). С возрастанием размера спиртового радикала в полимерных сложных эфирах кислот и одноатомных спиртов снижается температура размягчения — получается более пластичный полимер. Схема полимеризации метилового эфира акриловой кислоты — метилакрилата [c.472]

    Синтетические материалы на основе полимеров производных акриловой и метакриловой кислот. Акриловая, а также мет акриловая кислоты в присутствии органических или неорганических перекисей и кислорода легко полимеризуются при температурах ниже 100 С. Полимеры акриловой (так же как метакриловой) кислоты и ее производных (сложные эфиры, нитрилы, амиды,—см. стр. 238) называются полиакрилатами. Это обширный и разнообразный класс полимеризационных пластических масс, получивший большое техническое значение. Полимеры производных акриловой кислоты бесцветны, светостойки и прозрачны некоторые из них представляют собой твердые, упругие стекла другие—более мягкие, каучукоподобные и даже воскообразные вещества. [c.251]

    Сложные эфиры эфиры азотистой, азотной, серной, хлорсульфоновой, муравьиной, уксусной, пропионовой, акриловой, метакриловой кислот и их г а л оге нопр оизводные. [c.166]

    Полимеризация производных этилена в настоящее время очень широки используется для получения пластических масс. Определенные заместители в этилене, которые вызывают повышенную поляризацию молекулы, увеличивают как степень, так и скорость полимеризации. Такими заместителями являются ароматические радикалы (стирол), кислородсодержащие группы (акролеин, эфир акриловой кислоты, просты и сложные ванилевые эфпры) и галогены (винилхлорид). Но при накоплении этих заместителей в молекуле способность производных этилена к полимеризации уменьшается шш исчезает совсем. Стилъбея, например, дает при освещении в бензоле только-димер [6]. [c.697]

    Более доступными и привлекательными для практического применения, по сравнению с непредельными нитрилами, являются сложные эфиры и амиды а,(3-непре-дельных карбоновых кислот. Известно, что при взаимодействии 1-алкизаме-щенных 3,4-дигидроизохинолинов 10 (К = Н К1 = Н, РЬ, СОаЕ , СНгСНгСОаМе) с акриламидом 11 (Р2 = Н, 2 = МНг) [42] и акриловыми эфирами 11 (Р2 = Н, Ме 2 = ОМе) [43] образуются производные пиридо[2,1-й ]изохинолина 12 (Р = Н Р1 = Н, РЬ, СО, Е1, СНгСНгСОгМе). [c.25]

chem21.info

Акриловая кислота эфиры

Акриловой кислоты бутиловый эфир, определение в воздухе 112 сл.[ ...]

Другие эфиры акриловой и метакриловой кислот мешают определению.[ ...]

Метиловый эфир акриловой кислоты.[ ...]

Ангидриды кислот, сложные эфиры адипиновой, акриловой, малеиновой кислот мешают определению.[ ...]

Прямое определение акриловых кислот и их эфиров недостаточно корректно и имеет невысокую чувствительность. Применение (ПИД позволяет обнаружить в воздухе 10-6% анализируемых веществ [310].[ ...]

Определению не мешают: акриловые кислоты и их метиловые и бутиловые эфиры, спирты Сг—С5, стирол, фенол, бензол, толуол, ксилолы.[ ...]

Метилакрилат (метиловый эфир акриловой кислоты) - жидкость, температура кипения - 80,2 °С, плотность - 0,950 г/см . Хорошо растворяется в органических растворителях, в воде растворяется 5,2 %. В воздухе находится в виде паров.[ ...]

Определению не мешают сложные эфиры жирных кислот и метиловый спирт до 300 мкг. Влияние формальдегида, акриловой и метакриловой кислот, устраняют в процессе отбора проб.[ ...]

Целлюлоза довольно плохо взаимодействует с солями акриловой кислоты [5, 69], поэтому карбокснэтилцеллюлозу предпочтительнее получать из цианэтиловых или карбаминоэтиловых эфиров целлюлозы [уравнение (IV.28)]. По аналогии с другими примерами реакции ненасыщенных соединений [87] можно допустить, что реакционная способность этих веществ зависит как от их полярности, так и от стерических факторов.[ ...]

Основной стандартный раствор метилового эфира акриловой кислоты в 2,5% растворе едкого натра.[ ...]

Определение винилацетата хроматографией на бумаге . Метиловый эфир метакриловой кислоты (метилметакрилат) Определение метилметакрилата по формальдегиду . Метиловый эфир акриловой кислоты (метилакрилат) .[ ...]

Рабочий стандартный раствор с содержанием 1000 мкг/мл метилового эфира акриловой кислоты получают соответствующим разбавлением основного раствора 2,5% раствором едкого натра.[ ...]

Настоящие технические условия распространяются на метод определения содержания метилового эфира акриловой кислоты в воздухе промышленных помещений при санитарном контроле.[ ...]

Применяется для автогенной ацетиленовой сварки; для осветительных целей; как исходный продукт Для получения СК, уксусного альдегида, виниловых эфиров, хлористого винила, тетрахлорэтана, трихлорэтилена, тетрахлор-этилена, нитрила акриловой кислоты и т. д.[ ...]

Наибольшее практическое значение для производства П. смол имеют стирол С6Н5СН = СН2, хлористый винил СН2 = СНС1, хлористый винилиден СН2 = ССЬ, винилацетат СН2= СНОСОСН3) эфиры акриловой Ch3=CHCOOR и метакриловой СН2 = C(Ch4)COOR кислот и др.[ ...]

Химический контроль во всех случаях осуществлялся определением реакции среды (pH), перманганатной окисляемости, азо-тов — аммонийного, нитритов и нитратов. Азот нитратов для акриловой кислоты, аминов, эфиров фосфорной кислоты и диэти-ленгликоля определялся количественно салициловым методом [6].[ ...]

Органические вещества, содержащиеся в сточных водах, в той или иной степени поддаются биохимическому окислению. Значительно хуже окисляются ароматические углеводороды — бензол (0,37), стирол (0,52), метилсти-рол (0,5) и некоторые другие органические вещества.[ ...]

Неполярные гидрофобные сорбенты изготавливают путем сополимеризации стирола с дивинилбензолом. Основой для получения среднеполярных сорбентов являются сополимеры эфиров акриловой или мета-криловой кислот, иногда виниловых гетероциклов. В эту группу сорбентов входят порапаки R, S, Т, N, хромосорбы 107 и 108.[ ...]

ru-ecology.info

Синтез и свойства геля на основе сложного эфира акриловой кислоты

АННОТАЦИЯ

В статье приведен синтез полимерного геля на основе сложного эфира 1-хлор-3-пиперидино-2-пропил акрилата. Подобраны оптимальные условия получения геля. Проведены исследования физико-химических свойств растворов полученных гидрогелей, в том числе кинетика набухания гелей в водных растворах.

ABSTRACT

The synthesis of a polymer gel based on the ester of 1-chloro-3-piperidino-2-propyl acrylate is given in the article. Optimal conditions for obtaining the gel were chosen. The physical and chemical properties of solutions of the obtained hydrogels, including the kinetics of swelling of gels in aqueous solutions, are studied.

 

Ключевые слова: гель, сложный эфир, кинетика, полимеризация, инициатор, акриловая кислота.

Keywords: gel, ester, kinetics, polymerization, initiator, acrylic acid.

 

Введение

Наибольший интерес, среди сорбентов, нашедших применение в различных сферах народного хозяйства и промышленности, представляют полиакриловые гидрогели, полученные на основе ненасыщенных мономеров акриловых кислот, эфиров, амидов и т.д. В большинстве случаев, синтез полиакриловых гидрогелей осуществляется полимеризацией гидрофильных мономеров и модификацией известных полимеров. В качестве гидрофильных групп, повышающих абсорбционные свойства, могут служить звенья акриловой и метакриловой кислот и др.

Одним из наиболее известных методов синтеза акриловых полимеров является радикальная полимеризация. Так, авторами синтезированы гидрогели на основе акриловой кислоты в присутствии инициатора, состоящие из персульфата аммония и тетраметилэтилендиамина [6].

В работе была изучена радикальная полимеризация мономеров акриловой кислоты в присутствии N,N–метиленбисакриламида в водной среде при температуре 70 °С. В качестве инициатора использована окислительно-восстановительная система (Na2S2O3,K2S2O8) [4].

Другими авторами исследован процесс сшивания в гидрогелях полиакриламида, полиакриловой кислоты и их сополимеров в присутствии персульфата аммония [3]. Показано, что при повышении концентрации персульфата аммония, которая составляет 18 ммоль/л для полиакриловой кислоты, происходить образование химической сетки геля. Предложен механизм образования узлов химической сетки гелей полиакриламида и полиакриловой кислоты, основанный на реакции передачи цепи с участием атома водорода в α–положении к функциональной группе цепи. Изучено влияние температуры синтеза концентрации инициатора и состава смеси мономеров на степень набухания синтезированных гелей.

Авторами исследованы гели, синтезированные методам радикальной полимеризации с различной концентрацией мономера в присутствии инициатора персульфата аммония и сшивающего агента метилендиакриламида [1]. Изучено влияние состава сополимера на сорбционную способность по отношению к воде и термодинамические параметры взаимодействия гидрогелей с водой.

Однако большинство промышленных поли­мерных гидрогелей, обладая уникальными абсорб­ционными характеристиками, имеют ряд существенных недостатков, которые ограничивают областей их применения. Поэтому для повышения сорбционных и механических характеристик гидрогелей целесообразно введение в состав полимерной цепи азотсодержащих гетероциклических фрагментов.

В связи с этим, целью данного исследования является синтез акриловых мономеров с гетероциклическими фрагментами, получение на их основе полимерных гидрогелей и изучение их сорбционных свойств.

Экспериментальная часть

Морфолин (тетрогидро-1,4-оксазин) – бесцветная жидкость перед использованием перегоняли и отбирали фракцию с температурой кипения 24,9 оС/10 мм рт.ст.; d204=1,0007; n20=1,4545; эпихлоргидрин перегоняли при атмосферном давлении, Ткип.=117 оС; d204=1,18; n20=1,4381; акриловую кислоту перегоняли в присутствии гидрохинона Ткип.=141 оС; d204=1,0511; n20=1,4224.

ИК-спектры синтезированных соединений снимали на ИК-Фурье спектрофотометре Sistem-200.

Синтез 1-хлор-3-пиперидино-2-пропанола. В трехгорлую колбу, снабженную с перемешивающим устройством, холодильником Либиха и капельной воронкой помещали 0,1 моль (8,52 г) пиперидина и прикапывали 0,1 моль (9,25 г) эпихлоргидрина при температуре -10 °С. Смесь перемешивали при данной температуре в течение 12 часов. По окончании реакции из реакционной смеси отгоняли хлоргидрин. Получено 14,96 г 1-хлор-3-пиперидин-2-пропанола. Выход 85%.1-хлор-3-пиперидин-2-пропанол представляет собой бесцветную жидкость, растворимую в спирте, диметилформамиде, ацетоне и др. органических растворителях. Молекулярная формула С8h26NOCl: tкип=110 °С; d20=1,35 г/см3; nD20=1,372. В ИК-спектре наблюдаются максимальные частоты поглощения, см-1: v(OH) 3420-3393; v(Ch3) 2950-2960; v(C=C) 1610; v(C-O) 1050-1250.

Синтез сложного эфира 1-хлор-3-пиперидино-2-пропил акрилата. В трехгорлую колбу, снабженную механической мешалкой, холодильником Либиха, капельной воронкой помещали 0,1 моль ( 10,45 г) 1-хлор-3-пиперидино-2-пропанола, 2% концентрированной h3SO4 и из капельной воронки медленно привали 0,1 моль ( 7,207 г) акриловой кислоты. Реакцию этерификации проводили с перемешиванием при 70 °С в течение 3 часов. Реакционную смесь охлаждали при комнатной температуре и обрабатывали 10%-ным водным раствором NaОН. После разделения слоев в длительной воронке эфирный слой отделяли, сушили безводным хлористым кальцием. После этого в реакционную смесь добавляли гидрохинон и перегоняли из колбы Вюрца, отбирали фракцию, кипящую при 125 °С. Выход 14,42 г (83%). Молекулярная формула эфира C11h28NО2Cl; d20=1,203 г/см3, nD20=1,366. Сложный эфир 1-хлор-3-пиперидино-2-пропил акрилат - бесцветная жидкость с приятным запахом. Хорошо смешивается с этиловым спиртом, бензолом, диметилформамидом. В ИК-спектре наблюдаются максимальные частоты поглощения, см-1: v(С-N) 3431; v(Ch3) и (СН3) 2661-2963; v(C=O) 1711; v(C=C) 1639; v(C-O-С) 1043-1116.

Получение полимерного геля. В коническую колбу вносили 0,1 моль ( 28,65 г) 1-хлор-3-пиперидино-2-пропил акрилата и 14 мл этилового спирта и 1·10-2 мол/л инициатора динитрил азо-бис-изомасляной кислоты (ДАК). В реакционную среду сшивающие агенты не добавляли. Реакцию проводили с перемешиванием на магнитной мешалке при температуре 70 оС. После продолжительности реакции в течение 4 часов вся реакционная смесь превращается в мягкий прозрачный гель, имеющую форму сосуда. Полученный полимер извлекали из колбы, разрезали на части и промывали дистиллированной водой в течение 10 минут и сушили при температуре 80 оС до постоянной массы. Продолжительность промывки водой в течение 10 минут обеспечивает удаление низкомолекулярных реагентов. Выход полученного геля близок к 100%. Максимальные частоты поглощения в ИК-спектре геля наблюдаются, см-1: v(R3N) 3386; v(Ch3) 2959; v(C=O) 1701; vδ(Ch3+CN) 1653; v(C-O) 1031. Высушенный продукт измельчали до необходимого размера. Полимер характеризуется активной сорбцией воды, не растворяется и не набухает в органических растворителях. Изучение физико-химических свойств растворов полученных гелей проводили по методике, описанной в работах [2;5].

Результаты и обсуждение

Процесс синтеза полимерного геля состоит из трех стадий: 1) реакция взаимодействия пиперидина с эпихлоргидрином с образованием 1-хлор-3-пиперидино-2-пропанола:

Во второй стадии синтезирован 1-хлор-3-пиперидино-2-пропил акрилат, реакцией этерификации 1-хлор-3-пиперидино-2-пропанола с акриловой кислотой:

В третьей стадии протекает реакция радикальной полимеризации 1-хлор-3-пиперидино-2-пропил акрилата в присутствии инициатора ДАК с образованием нерастворимого полимера. Радикальная полимеризация указанного мономера состоит из трех стадий:

1) реакция инициирования. При инициировании образующиеся при распаде инициатора свободные радикалы присоединяются по двойным связям молекулы 1-хлор-3-пиперидинно-2-пропил акрилата вследствии которого образовываются активные центры.

2) рост цепи осуществляется посредством присоединения образованных активных центров с молекулой исходного мономера, т.е.:

3) реакция обрыва цепи может протекать по следующей схемой:

Проведены кинетические исследования сорбционных характеристик синтезированного гидрогеля [7]. По полученным результатам были построены графики зависимости степени набухания в воде от времени и размера гидрогеля на основе 1-хлор-3-пиперидино-2-пропил акрилата (рисунок).

 

Рисунок 1. Кинетические кривые набухания гидрогеля на основе 1-хлор-3-пиперидино-2-пропил акрилата в дистиллированной воде при 20 оС. Размеры, гидрогеля, мм: 1-до 0,25 мм; 2-0,5; 3-1,0; 4-2,0

 

По полученному графику видно, что степень набухания во времени измельчённых гидрогелей до 0,25 мм достигает 800 за 240 минут и выходит на прямую, а у гидрогелей с размером 2,0 мм степень набухания около 640 за 600 минут, т.е. образец 1 увеличивал сорбционные свойства почти в два раза, по сравнению с образцом 4. Из этого можно сделать вывод, что скорость набухания гидрогеля зависит от его размера.

Выводы

В ходе работы были синтезированы акриловые гидрогели на основе 1-хлор-3-пиперидино-2-пропил акрилата методом радикальной полимеризации в присутствии инициатора ДАК. Показано, что скорость адсорбции синтезированного гидрогеля зависит от его размера.

 

Список литературы:1. Адамова Л.В., Боровкова Н.А., Сафроков А.П. Сорбция воды редкосшитыми гидгогелями на основе акрило-вой, метакриловой кислот и их сополимеров // Вестник ТвГУ. Серия химия. – 2016. – № 1. – С. 66-73.2. Комиссаренков А.А., Федорова О.В. Сорбционные технологии. Определение свойств сорбентов. СПбГТУРП: СПб. 2015. – 44 с. 3. Сафроков А.П., Терзиян Т.В. Образование химической сетки гидрогелей акриламида и акриловой кислоты, иницированное персульфатом аммония // Высокомолек. соединение. Серия Б. – 2015. –Т. 57. –№ 5. – С. 338-345.4. Торебеков О.Т., Джумадилов Т.К., Дуйсенова М.У. Влияние соотношения исходных компонентов на коэф-фицент набухания и рН растворе системы г-ПАК-г-ПЭИ в присутствие ионов переходных – металлов // Со-временная наука: актуальные проблемы и практика. Серия, естественные и технические науки . – 2015. – № 01-02. 5. Успенская М.В. Сенсорные материалы на основе гидрогелей: учеб. пособие. – Санкт-Петербург. 2012. – 96 с.6. Dayal U., Mehta S.K, Choudhary M.S., Jain R.C. Synthesis of acrylic superabsorbents // J. Macromol. Sci. Part. C. –1999. –V. 39. – N 3. – P. 525.

 

7universum.com

Акриловая кислота полимеры эфиров - Справочник химика 21

    Полиакрилаты—продукты полимеризации акриловой или мет-акриловой кислот, их эфиров, галогенпроизводных, нитрилов и т. д. [50]. Способность акриловой кислоты полимеризоваться была установлена еще в 1843 г. Однако систематические исследования полимерных эфиров акриловой кислоты были осуществлены значительно позже. Полученные прозрачные полимеры стали известны под названием акрилоидов. Акриловая кислота при этерификации различными спиртами дает разнообразные сложные эфиры, которые могут быть затем полимеризованы. Следует отметить, что с повышением молекулярного веса спиртового радикала полимеры акриловых эфиров становятся все более мягкими и эластичными. [c.617]     Ценными свойствами обладает полимер метилакрилата — это прозрачное органическое стекло плексиглас. Метиловый эфир мет-акриловой кислоты полимеризуется при повышении температуры от 60 до 100° С и получается полиметилметакрилат [c.345]

    Полиакрилаты. Особое значение среди полимеров производ гых акриловых кислот имеют продукты полимеризации метиловых эфиров акриловой и метакриловой кислот СН.чСО С Нз и С1 г.СОгСзНз. Полиметилметакрилат и полиметилакрилат—твер- [c.379]

    Большое значение имеют полимеры эфиров акриловой и метакриловой кислот преимущественно с низшими спиртами — метиловым, этиловым и бутиловым (стр. 183). С возрастанием размера спиртового радикала в полимерных сложных эфирах кислот и одноатомных спиртов снижается температура размягчения — получается более пластичный полимер. Схема полимеризации метилового эфира акриловой кислоты — метилакрилата [c.472]

    Выпуск акриловой кислоты составляет 4500 т и распределяется следующим образом 1360 т — для производства эфиров и солей акриловой кислоты (полиакрилаты аммония и натрия), 1780 т — используется в текстильной промышленности, при бурении нефтяных скважин, в производстве коагулянтов. В первую очередь акриловая кислота и ее соли [143] идут на изготовление водорастворимых полимеров ц сополимеров, которые применяются в качестве замасливателей, апиретур, связующих, загустителей, диспергаторов. Для этой цели служат также и сополимеры с акрилатами. [c.160]

    Полимеры эфиров акриловой кислоты (полиакрилаты) [c.105]

    Акрилатные каучуки. К группе акрилатных каучуков относят продукты сополимеризации эфиров акриловой кислоты с различными полярными виниловыми мономерами, содержащими функциональную группу, способную к дальнейшим химическим превращениям в процессе вулканизации. Это линейные насыщенные полимеры, получаемые в основном методом радикальной сополимеризации в эмульсии или растворе. [c.17]

    Плотность полимера 1,19 г/см . Молекулярная масса зависит от метода и условий полимеризации и колеблется в пределах 35 000—85 000. Растворяется в сложных эфирах, спиртах, ароматических углеводородах и др. Вследствие низкой термостойкости применяется в сравнительно небольших количествах для изготовления лаков, клеев, искусственной кожи и т. п. Большее значение имеют сополимеры винилацетата с хлористым винилом и эфирами акриловой кислоты. Большие количества поливинилацетата перерабатываются в поливиниловый спирт. [c.471]

    Попытки непосредственно восстановить акриловую кислоту, ее эфиры или ее соли методом, который применяется для получения аллил-1-Н2-ацетата, не увенчались успехом, поскольку соответствующие реакции сопровождаются полимери- [c.120]

    Эфиры акриловой кислоты, полимеры которых имеют большое практическое значение в производстве пластических масс и органического стекла, легко получаются при действии спиртов и серной кислоты на нитрил акриловой кислоты  [c.405]

    Кроме описанных выше методов ПАА может быть получен путем химических превращений других синтетических полимеров. При действии жидкого аммиака на полимер хлорангидрида акриловой кислоты или эфиры полиакриловой кислоты удается получить чистый ПАА. Наиболее известный способ получения ПАА кислотным или щелочным омылением полиакрилонитрила приводит к образованию сополимеров, содержащих наряду с амидными и карбоксильными группами также и имидные группы при этом в зависимости от условий омыления образуется различное число звеньев АА в цепи. Продукт неполного омыления полиакрилонитрила едким натром в мягких условиях, известный в СССР под названием препарат К-4, успешно применяется как эффективный структурообразователь почв [3, с. 21]. [c.63]

    Для производства синтетической кожи в Германии применяли вместо латекса акрональ, являющийся полимером эфиров акриловой кислоты, получаемых тем же путем. Наконец, можно указать еще на действие окиси углерода на тетрагидро-фуран, приводящее через валеролактон к адипиновой кислоте  [c.210]

    Глицидиловый эфир акриловой кислоты Глицидиловый эфир метакриловой кислоты Циклический полимер глицидилакрилата Циклический полимер глицидилметакри-лата Al lg в присутствии гидрохинона, в массе, 20° G. Конверсия до 30% [111] [c.300]

    АКРИЛАТЫ — эфиры акриловой кислоты общей формулы СНа СН—СООР, где / — алкильный радикал. А. легко полимеризуются под действием света, тепла, кислорода, пероксидов. Широко применяются для производства полимеров (см. Полиакрилаты).  [c.12]

    Виниловые пластики применяются для склейки стекла триплекс, кабельной изоляции, изготовления шлангов и бензобаков и т. д., причел методы сополимеризации позволяют варьировать свойства технических продуктов в самых широких пределах. Все шире используются акриловые смолы (полимеры эфиров акриловой и метакриловоп кислот) как в производстве органического стекла, так и в качестве заменителей каучука. Исходные мономеры получаются не только по старым схемам (из хлоргидринов этиленгликоля и ацетона, а также через нитрилы оксипроиионовой и оксиизомасляной кислот), но и по новым (через метилвинилкетон и дегидратацией производных молочной кислоты)  [c.466]

    Беззольные присадки класса полярных полимеров представляют собой продукты сополимеризации двух мономеров, из которых один содержит полярную группу (азотистое основание) и служит носителем активных свойств присадки, а второй — олеофильный мономер обеспечивает растворимость присадки в углеводородах. Соотношением мономеров регулируют активность присадки [9, 18, 29, 37, 38]. Азотсодержащими мономерами служат эфиры аминоспиртов метакриловой и акриловой кислот, аминовиниловые эфиры карбоновых кислот, винилзамещенные органические соединения, а также метилвинилпиридины, амидизированный октадецен и [c.155]

    Металлорганические соединения цинка, кадмия и ртути довольно часто используются в каталитической полимеризации, протекающей, как правило, в мягких условиях. В присутствии катализаторов типа Циглера—Натта (комплекс цинкорганического соединения с гало-генидом титана или другого переходного металла) образуются стереорегулярные полимеры из этилена, пропилена или смесей олефинов [640—643]. Диэтилцинк и диэтилкадмий (алкил-кадмийхлорид), иногда с добавками метанола или воды, катализируют полимеризацию (или сополимеризацию) по сопряженной или поляризованной С=С-связи изопрена, стирола, акрилонитрила, эфиров акриловой кислоты, виниловых эфиров [644—646, 740, 741]. Очень характерна для диэтилцинка (и, вероятно, для диэтилкадмия) полимеризация или сополимеризация с разрывом С—О-связи в окисях или лактонах [644, 648—652]. Часто к диалкилметаллу добавляют окислы металлов или различные сокатализаторы (воду, спирты, кислород). Сходные процессы в присутствии солей цинка [386—394] требуют более жестких условий (нагревание, повышенное давление) и не приводят к образованию стереорегулярных структур молекулярные веса полимеров ниже, чем при применении катализаторов на основе диэтилцинка. [c.1349]

    Суспензионную полимеризацию эфиров акриловой и метакриловой кислот проводят в водной, среде в присутствии инициаторов, растворимых в воде мономеров. Метод применяется при полимеризации низших эфиров метакриловой кислоты (метилового, этилового) и эфиров акриловой кислоты. Полимер об- [c.218]

    Для стабилизации полисульфонов, с целью получения термостабильных полимеров, используются эфиры тетратиофосфорной или тритиофосфористой кислот формулы (НЗ)зР=3 и (НЗ)зР (234, 235]. Модифицирующими мономерами для полисульфонов являются акриловая кислота, замещенные акриловые кислоты, их эфиры, амиды и нитрилы, метилизопропенилкетон, винилхлорид, бутадиен, изопрен, стирол и др. [237]. [c.356]

    Ценность сополимеров первой группы определяется тем, что введением в макромолекулу полиметакрилатов звеньев, представляющих производные акриловой кислоты или эфиры метакриловой кислоты со спиртами более высокого молекулярного веса (этиловый, бутиловый и т. д. до олеинового), удается повысить эластичность конечных продуктов. При определенных соотношениях метилметакрилата с другими метакрилатами можно получить эластичные резиноподобные продукты, обладающие удлинением 100% и выще. Одновременно в этих случаях обычно повышается адгезия, что делает эти сополимеры пригодными для производства безосколочного стекла типа триплекс . Совместная полимеризация метилметакрилата с нитрилом акриловой кислоты дает про зрачный полимер повышенной механической прочности. [c.396]

    Полярные полимеры представляют собой продукты совместной полимеризации мономеров двух типов — неполярного, обеспечивающего растворимость присадки в топливе, и поверхностно-активного, способного к притяжению поверхностно-активных продуктов, образующих осадки. В качестве поверхностно-активных мономеров используют эфиры или амиды метакриловой и акриловой кислот, виниловые эфиры карбоновых кислот или винилзамещенные органические соединения и т. д. [c.192]

    A rjiharz n акриловые смолы (полимеры эфиров акриловой и мета-криловой кислоты). [c.17]

    Чистые эфиры акриловой кислоты легко полимеризуются даже при комнатной температуре (иногда со взрывом). Поэтому в не-стабилизованном состояни-и они должны храниться при температуре не выше 5°С. Из этих эфиров наиболее широкое применение получил метиловый эфир акриловой кислоты, полимер которого используется для получения лаков., [c.137]

    Наибольшее применение в качестве компонентов клеевых композиций на основе акриловых производных нашли полимеры эфиров акриловой и метакриловой кислот, а также некоторые поли-функциоиальные производные метакриловой кислоты и эфиры а-цианакриловой кислоты. Полимеры эфиров акриловой и метакриловой кислот представляют собой прозрачные, термопластичные, вязкие или твердые продукты. Некоторые из них совмещаются с [c.244]

    Однако более ван но его значение как промежуточного продукта для синтеза других веществ. При полимеризации аллилового спирта образуется водорастворимый полимерный спирт, который может быть использован для синтеза сложных полиэфиров (особое значение приобрел диаллнлфталат). Полимер диаллилфталата пригоден для получения тер.ио- и дуропластов. Он используется также для производства лаков и пр. Находят применение и другие сложные эфиры эфиры циануровой, малеиновой, фумаровой и акриловой кислот. [c.192]

    Химики почувствовали, что с их глаз как бы спала пелена натуральный каучук это полиизопрен, целлюлоза — полиглюкозид. Требовалось только заполимеризовать изопрен, чтобы получить цепные молекулы полиизопрена. И другие соединения, сходные с изопреном, тоже вероятно должны образовывать полимеры, подобные каучуку Стали полимеризовать все вещества, молекулы которых содержат двойные связи С=С диметилбутадиен, винил-хлорид, стирол, акриловую кислоту, метиловый эфир метакриловой кислоты и многие другие ненасыщенные соединения. Полимеризация всех этих соединений протекала достаточно легко. Только с этиленом возникли трудности. Понадобилось очень высокое давление, чтобы добиться его полимеризации 0,196 ГПа (2000 атм) и 200 °С. [c.113]

    В процессе окисления стирола авторы [376] использовали кобальтсодержащий полимерный катализатор [398]. Сополимеры акриловой кислоты и эфира винилфосфоновой кислоты обрабатывали растворами, содержащими ионы кобальта, которые комплексовались с полимером. Предпочтительную конформацию макромолекул вокруг иона металла фиксировали путем межмо-лекулярной сшивки с использованием бутадиена. При окислении стирола этот катализатор приводит к увеличению скорости образования мономерных продуктов — бензальдегида и оксида стирола — по сравнению как с некатализированным окислением, так и с окислением в присутствии СоВ. При этом заметно снижается скорость образования побочных полимерных продуктов. При повторном использовании катализатора его активность не уменьшается. [c.161]

    Характеристика и получение полиакрилатов. Полиакрилатами называют полимеры эфиров акриловой и метакриловой кислот. Наибольшее значение имеют полимеры метилакрилата СНа = СН—СООСНз и метилметакрилата СНз = С (СНз) — -СООСНз. [c.172]

    Радикальное присоединение непредельных кислот, которые по сравнению с эфирами более эффективно изменяют свойства эластомеров, изучалось тем не менее значительно реже. Показано [42], что степень прививки акриловой кислоты в толуольном растворе НК выше, чем метакриловой. К сожалению, почти во всех исследованиях по прививке подробно не описываются свойства привитых полимеров. Некоторым исключением являются работы [c.237]

    Акролеин СН2 = СН—СНО (т. кип. 52,5 С) — жидкость с резким раздражающим запахом. Он хорошо растворим в воде и образует с ней азеотропную смесь. При длительном хранении или нагревании легко полимеризуется в циклические или линейные полимеры, что заставляет ири его переработке использовать добавки ингибиторов. Акролеин широко применяется для получения акриловой кислоты и ее эфиров, аллилового спирта, синтетического глицерина и других продуктов, в том числе метионина HiS h3 h3 H(Nh3) OOH, являющегося ценной добавкой к KOipMy для птиц. [c.419]

    Полиметакрилаты или полиакрилаты, т. е. полимеры эфиров метакриловой или соответственно акриловой кислот, получили применение в качестве присадок к маслам сравнительно недавно, однако некоторые специфические преимущества, которыми эти вещества обладают, обещают им широкое распространение в ближайшем будущем. В частности, масла, загущенные полиметакрилатами, обладают лучшими низкотемпературными свойствами, чем загущенные нолиизобутиленом или виниполом. [c.135]

    Возможность полимеризации иод влиянием тепла установлена и для метилового эфира метакриловой кислоты. При 70° образуется 0,0081% полимера в час, степень пЛшмеризации такого полимера составляет 25 ООО. При 130° скорость полимеризации возрастает до 0, 25% в час, но степень полимеризации снижается до 6500. Еще более ничтожна скорость термической активации бутадиена, изопрена, акриловой кислоты. Наблюдаемую полимеризацию нельзя полностью приписать только действию тепла, так как даже следы кислорода, оставшиеся в системе, могут способствовать инициированию этой реакции. [c.93]

    Скорость роста макрорадикалов в начальный период полимеризации сохраняется постоянной и уменьшается при глубокой степени превращения, когда концентрация полимера в мономере, а вместе с этим и вязкость среды значительно возрастают. Так, константа скорости роста макрорадикалов винилацетата уменьшается в 3 раза после превращения в полимер 57% мономера и в 22 раза—при степени лревращенкя мономера 65%. Резкое уменьшение скорости роста цепи установлено для метилметакрилата при степени превращения в полимер, равной 50%. При полимеризации бутилового эфира акриловой кислоты константа скорости роста цепи снижается в 4 раза после превращения 20% мономера в полимер и в 700 раз по достижении 70%-ной концентрации полимера в мономере . [c.116]

    С возрастанием размера спиртового радикала в полимерных сложных эфирах указанных кислот и одноатомных спиртов снижается температура размягчения полимера, т. е. температура, при которой полимер становится гибким. При одинаковом размере спиртового радикала полимеры эфиров акриловой кислоты отличаются более низкими температурами размягчения по сравнению с полимерными эфирами метакриловой кислоты  [c.342]

    В результате применения растворенных в воде полимеров обеспечивается контакт воды со стенками трубопровода. В качестве ПАВ могут использоваться также и многочисленные гомополимеры и сополимеры (полиакриламиды, полимеры и сополимеры окисленного алкилена, сополимеры акриламида и эфира акриловой кислоты, сополимеры акриламида и эфира метакриловой кислоты). Вместо полимеров можно использовать также натуральные материалы (полисахарид). Введение полимерных присадок (водные растворы метиламина полиакриловой кислоты или растворы полиакриламида и формальдегида в щелочной среде с концентрацией от 0,01 до 10%) оказывается эффективным и для предотвра-ш,ения образования парафинистых отложений в трубопроводах. Присадки могут содержать добавки глицерина, диэтиленгликоля или диметилформамида. [c.120]

    Напишите схемы полимеризации а ) метилового эфира акриловой кислоты б) метилового эфира метакриловой кислоты. Укажите практическое значение образующихся полимеров. [c.53]

    Большое значение имеют полимеры эфиров акриловой и метакриловой кислот. Из большого числа известных эфиров этих кислот наибольшее техническое применение получили полимеры метиловых эфиров, главным образом метакриловой кислоты, более ограниченное — полимеры соответствуюш,их этиловых, пропиловых и бутиловых эфиров. [c.319]

chem21.info

Акриловая кислота, сополимеры эфиров - Справочник химика 21

    Сополимеры виниловых сложных и простых эфиров и кетонов, стирола, акриловой кислоты или эфиров акриловой кислоты с малеиновым ангидридом [c.189]

    Кроме описанных выше методов ПАА может быть получен путем химических превращений других синтетических полимеров. При действии жидкого аммиака на полимер хлорангидрида акриловой кислоты или эфиры полиакриловой кислоты удается получить чистый ПАА. Наиболее известный способ получения ПАА кислотным или щелочным омылением полиакрилонитрила приводит к образованию сополимеров, содержащих наряду с амидными и карбоксильными группами также и имидные группы при этом в зависимости от условий омыления образуется различное число звеньев АА в цепи. Продукт неполного омыления полиакрилонитрила едким натром в мягких условиях, известный в СССР под названием препарат К-4, успешно применяется как эффективный структурообразователь почв [3, с. 21]. [c.63]

    Исследования подтвердили необходимость выбора присадки конкретно для каждой нефти, поскольку физико-химический состав нефтей существенно влияет на их структурно-механические свойства. Перспективными были признаны реагенты-депрессаторы сополимеров на основе высших эфиров малеиновой и акриловой кислот. [c.148]

    Плотность полимера 1,19 г/см . Молекулярная масса зависит от метода и условий полимеризации и колеблется в пределах 35 000—85 000. Растворяется в сложных эфирах, спиртах, ароматических углеводородах и др. Вследствие низкой термостойкости применяется в сравнительно небольших количествах для изготовления лаков, клеев, искусственной кожи и т. п. Большее значение имеют сополимеры винилацетата с хлористым винилом и эфирами акриловой кислоты. Большие количества поливинилацетата перерабатываются в поливиниловый спирт. [c.471]

    ДН-1- сополимер на основе высших спиртов из СЖК ВЭС-503 - 20%-ный раствор термополимера этилена с винил-ацетатом (37%) и малеиновым ангидридом (0,5%) в дизельном топливе сополимеры на основе высших эфиров малеиновой и акриловой кислот и др. [c.18]

    Напротив, акрилатные звенья гидролизуются сравнительно легко, поэтому сохранить неизменными часть звеньев акрилового сомономера удается лишь омылением сополимера при низких температурах [6, с. 77]. Сополимеры ВА с акриловой кислотой или ее эфиром, подвергнутые щелочному алкоголизу, образуют водорастворимые электролиты. Водные растворы сополимеров обладают большой вязкостью вследствие ассоциации ионизированных макромолекул, содержащих звенья соли акриловой кислоты. [c.92]

    Поскольку тройные сополимеры являются эффективными пластификаторами, то можно получать эластичные продукты без собственно пластификаторов. В таких рецептурах типичное соотношение ПВХ тройной сополимер составляет 1 1. Получаемые композиции имеют твердость по Шору (А) около 80, отличную химическую стойкость и стойкость к старению. Если использовать соответствующие стабилизаторы, то композиции могут быть прозрачными. Тройные сополимеры для этой цели получают сополимеризацией ВХ с этиленом, винилацетатом, эфирами акриловой кислоты и другими мономерами. [c.271]

    Из эфиров акриловой кислоты для получения полимеров и сополимеров наиболее широко используют метил-, этил-, бутил-, и 2-гексилакрилаты. [c.136]

    Пластификатора) к металлам, поролону, древесине. Для этих же целей могут быть использованы клеи на основе полихлоропрена (клей 88НП), сополимера бутадиена и акрилонитрила, сополимеров винилацетата и акриловой кислоты, сополимеров эфиров акриловой кислоты. [c.223]

    В качестве исходного материала при напылении применяют тер-мо- и светостабилизированный полиэтилен низкого давления (высокой плотности), при экстру зивном нанесении. - полиэтилен и высокого и низкого давления, а также его сополимеры при обязательном применении адгезива (подклеивающего слоя). В качестве адгезива используют сополимеры этилена с эфирами акриловой кислоты, сополимер этилена с винилацетатом (жесткий адгезив), а также композиции на основе бутилкаучука (мягкий адгезив). [c.100]

    В результате применения растворенных в воде полимеров обеспечивается контакт воды со стенками трубопровода. В качестве ПАВ могут использоваться также и многочисленные гомополимеры и сополимеры (полиакриламиды, полимеры и сополимеры окисленного алкилена, сополимеры акриламида и эфира акриловой кислоты, сополимеры акриламида и эфира метакриловой кислоты). Вместо полимеров можно использовать также натуральные материалы (полисахарид). Введение полимерных присадок (водные растворы метиламина полиакриловой кислоты или растворы полиакриламида и формальдегида в щелочной среде с концентрацией от 0,01 до 10%) оказывается эффективным и для предотвра-ш,ения образования парафинистых отложений в трубопроводах. Присадки могут содержать добавки глицерина, диэтиленгликоля или диметилформамида. [c.120]

    Сополимеры сложных эфиров итаконовой кис лоты и сложных эфиров акриловой кислоты. . Сополимеры стирола, изопрена и алкилиро [c.343]

    Такое влияние микроструктуры цепи наблюдали также при гидролизе сополимеров малых количеств п-нитрофенил- или п-меток-сифенилакрилатов с метакриловой кислотой [20]. Однако скорость гидролиза сополимеров /г-нитрофенил- или /г-метоксифенилметак-рилатов с акриловой кислотой не зависит от микроструктуры макромолекул [21], хотя, казалось бы, анхимерное содействие в диадах акриловая кислота — метакриловый эфир и метакриловая кислота — акриловый эфир должно сопровождаться одинаковыми [c.167]

    В ряде патентов приводятся способы получения мочевиноформальдегидных смол и клеев на их основе Тдк, описаны клеи из мочевиноформальдегидных смол, модифицированные введением кровяных клеев ° , соли сульфированного полистирола 4-компонентного сополимера из стирола, акриловой кислоты, ее эфиров и нитрила , бутадиенонитрильного каучука , поливинилового спиртаказеина , поливинилацетата , алкидной смолы фурфурола и фурфурилового спирта . [c.373]

    Ценность сополимеров первой группы определяется тем, что введением в макромолекулу полиметакрилатов звеньев, представляющих производные акриловой кислоты или эфиры метакриловой кислоты со спиртами более высокого молекулярного веса (этиловый, бутиловый и т. д. до олеинового), удается повысить эластичность конечных продуктов. При определенных соотношениях метилметакрилата с другими метакрилатами можно получить эластичные резиноподобные продукты, обладающие удлинением 100% и выще. Одновременно в этих случаях обычно повышается адгезия, что делает эти сополимеры пригодными для производства безосколочного стекла типа триплекс . Совместная полимеризация метилметакрилата с нитрилом акриловой кислоты дает про зрачный полимер повышенной механической прочности. [c.396]

    Сополимеры эфиров акриловых кислот Сополимер метил-метакрилата, стирола и нитрилакрилата Акрилат СМСН [c.31]

    Из-за высокой водорастворимости акриловых кислот сополимеры приготовляли вначале в виде эфиров акриловой и метакриловой кислот блочным или суспензионным способами, причем [c.305]

    Хлордекалии, содержащий около 56% С1, обладает относительно большой растворяющей способностью. Он растворяет нитрат целлюлозы А, хлорированный поливинилхлорид, сополимеры винилхлорида и эфиров акриловой кислоты, винилизобутиловый эфир, поливинилацетали, полиметакрилаты, сложные поливиниловые эфиры. Однако он не растворяет нитрат целлюлозы Е, ацетат целлюлозы, полиакрилаты и полиамиды. [c.565]

    Промышленное применение нашли сополимеры винилацетата с винилхлоридом, эфирами акриловой кислоты, виниловыми эфирами каприловой и стеариновой кислот, эфирами малеиновой кислоты (дибутилмалеинатом), этиленом и др. [c.170]

    В процессе окисления стирола авторы [376] использовали кобальтсодержащий полимерный катализатор [398]. Сополимеры акриловой кислоты и эфира винилфосфоновой кислоты обрабатывали растворами, содержащими ионы кобальта, которые комплексовались с полимером. Предпочтительную конформацию макромолекул вокруг иона металла фиксировали путем межмо-лекулярной сшивки с использованием бутадиена. При окислении стирола этот катализатор приводит к увеличению скорости образования мономерных продуктов — бензальдегида и оксида стирола — по сравнению как с некатализированным окислением, так и с окислением в присутствии СоВ. При этом заметно снижается скорость образования побочных полимерных продуктов. При повторном использовании катализатора его активность не уменьшается. [c.161]

    Выпуск акриловой кислоты составляет 4500 т и распределяется следующим образом 1360 т — для производства эфиров и солей акриловой кислоты (полиакрилаты аммония и натрия), 1780 т — используется в текстильной промышленности, при бурении нефтяных скважин, в производстве коагулянтов. В первую очередь акриловая кислота и ее соли [143] идут на изготовление водорастворимых полимеров ц сополимеров, которые применяются в качестве замасливателей, апиретур, связующих, загустителей, диспергаторов. Для этой цели служат также и сополимеры с акрилатами. [c.160]

    Акрилатные латексы — содержат сополимеры акриловых или метакриловых эфиров с винильными или диеновыми сополимерами. Наибольшее применение получили метилакрилат, метилметакрилат, этилакрилат и бутилакрилат. Содержание эфира в сополимере обычно выше 60%. Варьируя природу и соотношение мономеров, можно значительно повышать озоно- и кислородостой-кость, а также маслостойкость латекса. В СССР промышленность СК выпускает латекс тройного сополимера — бутадиена, метилметакрилата и метакриловой кислоты, (65 35 1)—ДММА-65, а также латекс ДММА-60-2 (40% бутадиена, 60% метилметакрилата и 3—5% метакриламида). Замена метакриловой кислоты на метакриламид повышает термостойкость, адгезионную прочность и другие свойства пленок. Синтез этих латексов проводят в присутствии сульфонатов при 30—50 °С до практически полного исчерпания мономеров. [c.606]

    Известны сополимеры простых виниловых эфиров с эфирами акриловой кислоты, акрилонитрилом, хлористым винилом, хлористым иинилиденом, хлоропреном, бутадиеном, изопреном, винилацетатом. [c.519]

    МЕТИЛАКРИЛАТ (метиловый эфир акриловой кислоты) Hj H OO Hj— бесцветная жидкость, т. кип. 80,2 С, По химическим свойствам и способам получения М. подобен метилметакрила-ту. В промышленности получают из нитрила акриловой кислоты, из этилен-циангидрина, прямым карбонилирова-ние. л ацетилена, М. обладает наркотическим и ядовитым действием. Его пары раздражают слизистые оболочки носа, горла, глаз. М.— мономер, полимернзу-ющийся под действием свободных радикалов. Используют, в основном, как сополимер, напрнмер со стиролом. [c.160]

    Наибольший интерес представляют сополимеры этилакрилата с 2-хлорэтилвиниловым эфиром и бутилакрилата с акриловой кислотой или с нитрилом акриловой кислоты. [c.45]

    Сополимеры бутилме-такрилата с эфирами акриловой кислоты [c.214]

    Лаковое покрытие состоит из сополимеров винилиденхлорида и акрилового эфира итаконовой кислоты, сополимеров мочевиноформальдегид-ной смолы и полиамида, а также неорганических порошков (диоксидов кремния, магния, сульфата бария), которые придают непрозрачность покрытию. Пленочный материал с односторонним покрытием (матирующим, красковоспринимающим) имеет следующие свойства плотность карандашной линии 0,9...1,0, Яа 0,5...1,0 мкм, прозрачность 10... 70 % (в зависимости от рецептуры лакового слоя). [c.82]

    Азот-, фосфор- или кислородсодержащие органические соединения, например акрилонитрил, метакрил онитрил, винил пиридин и его производные, акриловые и метакриловые эфиры, винилизобутиловый эфир, винилацетат, меркаптобензорь ная кислота образуют при взаимодействии с БК при инициировании органическими пероксидами привитые сополимеры, которые можно использовать как адгезивы и клеи для крепления БК с натуральными и синтетическими волокнами, металлами, различными эластомерами. Сообщается о модификации Б К при взаимодействии с ангидридами органических кислот и альдегадами, а также по реакциям карбоксилирования, окисления, эпоксидирования [18]. Практическое использование этих полимерных продуктов пока ограничено. Большой интерес представляют смеси БК и его галогенпроизводных с другими эластомерами. [c.283]

    Как и в случае винилхлорида, более активные по сравнению с ВА эфиры акриловой кислот >1 необходимо вводить в реакцию постепенно с целью получёния композиционно однородных продуктов. Константы сополимеризации ВА и эфиров малеиновой кислоты мало отличаются друг от друга, поэтому и при одновременной загрузке обоих мономеров получаются однородные сополимеры. [c.44]

    Работами последних лет показано, что реакционная способность сомономеров может существенно меняться под влиянием среды, различных комплексообразующих добавок, инициаторов. Примерами тому могут служить приведенные в табл. 1.4 значения констант сополимеризации ВА с акриловой кислотой и вц-нилпирролидоном, определенные при сополимеризации мономеров в массе, безводном спирте и спирте-ректификате. Нами показано [а. с. СССР 531814], что при сополимеризации ВА с простыми виниловыми эфирами выход сополимеров и содержание эфиров в. их составе увеличиваются при добавлении воды к реакционной смеси, что также свидетельствует о влиянии комплексообразования на активность мономеров. [c.44]

    Дисперсии сополимеров винилацетата с эфирами акриловой кислоты получают, используя в качестве сомономеров 2 Этилгек-силакрилат (2-ЭГА), бутилакрилат, а также акриловую кислоту. [c.57]

    На основе эфиров о-нитробензилового спирта и его производных могут быть получены светочувствительные пленкообразующие полимеры и сополимеры с различными свойствами. Примеры таких систем, включающий полициклические, гетероароматические и замещенные о-нитробензильные соединения и сополимеры их эфи ров с ненасыщенными кислотами, приведены в пат. США 3849137 и пат. ФРГ 2150691. На подобной основе разработан также и пленочный фоторезист [пат. ФРГ 2922746]. Его получают, например, из сополимера 40 ч. о-нитробензилакрилата, 54 ч. метилметакри-лата, 1 ч. акриловой кислоты и 1 ч. азодиизобутиронитрила, добавляя пластификатор и черный краситель. Экспонированная часть несколько выцветает, что обеспечивает хороший цветовой контраст. Проявляют водно-органическим раствором триэтаноламина. Резист хорошо выдерживает травление кислотой, растворами РеС1з, СиСЬ и (МН4)23208, а также в щелочах он может быть использован и как гальванорезист. [c.101]

    Чувствительность сополимеров метилметакрилата с ненасыщенными кислотами (акриловой, метакриловой, кротоновой прн низком содержании этих кислот составляет 10 —10 Кл/см [пат. ФРГ 2628467]. Сополимер с итаконовой кислотой (от 20 до 30%) обладает более высокой чувствительностью в качестве позитивного электронорезиста, чем ПММА изучены и сополимеры эфиров итаконовой кислоты [115]. [c.257]

    Полимеры и сополимеры производных акриловой и метакриловой кислот — их эфиров (акрилатов и метакрилатов), акрилони-трила и акриламида — благодаря своим ценным свойствам нащли широкое применение в современной технике. В особенности это относится к полиметакрилатам, отличающимся очень высокой светостойкостью, прозрачностью, высокими физико-механическими свойствами. [c.135]

chem21.info

Эфиры акриловой кислоты, получение - Справочник химика 21

    В американской технической литературе приводятся сравнительные данные по расходу сырья и выходам продуктов при получении эфира акриловой кислоты, полученного по разным способам (табл. 49, 50 и 51). [c.375]

    Если воду заменить спиртом, то образуются сложные эфиры акриловой кислоты, которые широко используют при получении макромолекулярных соединений  [c.222]

    В настоящее время существует три метода получения эфиров акриловой кислоты. Вначале реакцию между ацетиленом, спиртом и карбонилом никеля проводили при 40° и атмосферном давлении в присутствии кислоты, например соляной выход этилакрилата равнялся примерно 80% [22] [c.293]

    Прочие методы получения эфиров акриловой кислоты описаны в гл. 18 (стр. 350). [c.294]

    Полиакрилаты—продукты полимеризации акриловой или мет-акриловой кислот, их эфиров, галогенпроизводных, нитрилов и т. д. [50]. Способность акриловой кислоты полимеризоваться была установлена еще в 1843 г. Однако систематические исследования полимерных эфиров акриловой кислоты были осуществлены значительно позже. Полученные прозрачные полимеры стали известны под названием акрилоидов. Акриловая кислота при этерификации различными спиртами дает разнообразные сложные эфиры, которые могут быть затем полимеризованы. Следует отметить, что с повышением молекулярного веса спиртового радикала полимеры акриловых эфиров становятся все более мягкими и эластичными. [c.617]

    Полимерные эфиры акриловой кислоты применяются для получения пленкообразующих веществ, связующих веществ и пластических масс. [c.238]

    Полимеризация эфиров акриловой кислоты осуществляется легко. Акрилаты образуют твердые стекловидные материалы, аналогичные метакрилатам, но с худшими свойствами. По этой причине метакриловые эфиры более предпочтительны для получения прозрачных пластичных материалов. [c.221]

    Полимеризация метилакрилата является типичной для получения полимеров из эфиров акриловой кислоты. Получено и описано в литературе большое число полиакрилатов [П9 - [c.221]

    Из эфиров акриловой кислоты для получения полимеров и сополимеров наиболее широко используют метил-, этил-, бутил-, и 2-гексилакрилаты. [c.136]

    Акролеин применяется для получения акриловой кислоты и ее эфиров, аллилового спирта, синтетического глицерина и других веществ. Эфиры акриловой кислоты используют в реакциях полимеризации и сополимеризации для получения полимеров с заданными свойствами. [c.848]

    Из Р-(метоксиметил)-акрилонитрила образуется 4-метоксиметил-З-карбэтокси-2-пиперидон с 77-процентным выходом. При конденсации метилового эфира акриловой кислоты с циануксусным эфиром и последующем восстановлении образуется 5-карбометокси-2-пиперидон с отличным выходом. Если заменить метиловый эфир акриловой кислоты этиловым эфиром коричной кислоты, то конденсация Михаэля протекает с 85-процентным выходом, а восстановление полученного соединения приводит к образованию 4-фенил- [c.507]

    Как и в случае винилхлорида, более активные по сравнению с ВА эфиры акриловой кислот >1 необходимо вводить в реакцию постепенно с целью получения композиционно однородных продуктов. Константы сополимеризации ВА и эфиров малеиновой кислоты мало отличаются друг от друга, поэтому и при одновременной загрузке обоих мономеров получаются однородные сополимеры. [c.44]

    Метиловый спирт (метанол)—важное соединение для получения главным образом формальдегида, а также диметилсульфата, диметилтерефталата, метилацетата, диметилформамида, антидето-пационных смесей (тетраметилсвинец), ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется в качестве растворителя и может быть использован как моторное топливо или как высокооктановая добавка к нему. Применение метанола в двигателях внутреннего сгорания решает как энергетическую, так и экологическую проблемы, так как при сгорании метанола образуются только водяной пар и СОг, тогда как при сгорании бензина— оксиды азота, СО и другие токсические соединения. [c.164]

    Напишите уравнения реакций получения из диметилфосфита натрия и метилового эфира акриловой кислоты -фосфонпропионовой кислоты. [c.114]

    МЕТИЛАКРИЛАТ (метиловый эфир акриловой кислоты) Hj H OO Hj— бесцветная жидкость, т. кип. 80,2 С, По химическим свойствам и способам получения М. подобен метилметакрила-ту. В промышленности получают из нитрила акриловой кислоты, из этилен-циангидрина, прямым карбонилирова-ние. л ацетилена, М. обладает наркотическим и ядовитым действием. Его пары раздражают слизистые оболочки носа, горла, глаз. М.— мономер, полимернзу-ющийся под действием свободных радикалов. Используют, в основном, как сополимер, напрнмер со стиролом. [c.160]

    Из пропилена методом оксосинтеза получаются масляные альдегиды (нормальный и изо), а из них — соответствующие масляные кислоты и бутиловые спирты. Масляные альдегиды и масляные кислоты широко при меняются в производстве бутирата и ацетобутирата целлюлозы, 2-этилгекси-лового спирта, поливинилбутираля и других продуктов, применяемых в пластических массах. Первичный бутиловый спирт является хорошим растворителем. Нормальный первичный бутиловый спирт используется для получения бутил ацетата, дибутилфталата, бутилнитрита (присадки к дизельному топливу, повышающей его цетановое число), октиламипа (являющегося промежуточным продуктом в производстве синтетических смол ш фл ото реагентом при обогащении руд цветных металлов), бутилового эфира акриловой кислоты и др. [206]. [c.329]

    Полимеризация производных этилена в настоящее время очень широки используется для получения пластических масс. Определенные заместители в этилене, которые вызывают повышенную поляризацию молекулы, увеличивают как степень, так и скорость полимеризации. Такими заместителями являются ароматические радикалы (стирол), кислородсодержащие группы (акролеин, эфир акриловой кислоты, просты и сложные ванилевые эфпры) и галогены (винилхлорид). Но при накоплении этих заместителей в молекуле способность производных этилена к полимеризации уменьшается шш исчезает совсем. Стилъбея, например, дает при освещении в бензоле только-димер [6]. [c.697]

    Существует два способа получения ридинола. По одному из них при взаимодействии гидрохлорида пиперидина, пароформа и ацетофенона образуется й-пиперидиноэтилфенилкетон, который с фенилмагнийброми-дом Дает 1, -дифенил-3-(М-пиперидино)-пропанол-1 (IV) [1, 2]. По второму методу при реакции пиперидина (I) с эфирами акриловой кислоты [c.99]

    Аналогично реагирует бромистый водород [8], однако иодистый водород дает эфиры акриловых кислот [8], На использовании последней реакции основан один нз меюдов получения эфиров а,р-ненасыщенных кислот, и на ее основе можно будет, повидимому, разработать метод количествешюго определения глицид-пых эфиров.  [c.329]

    Ди-р-карбэтоксиэтилметиламин был получен действием этилового эфира -бромпропионовой кислоты на хлористоводородную соль метиламина в присутствии окиси серебра действием метиламина на этиловый, эфир акриловой кислоты нагреванием этилового эфира р-хлорпропионовой кислоты, метиламина и бензола в автоклаве . [c.180]

    Этиловый эфир [5-5ромпропионовой кислоты может быть получен этерификацией р-бромпропионовой кислоты и присоеди- . ение,ч бромистого водорода к этиловому эфиру акриловой кислоты [c.544]

    Вместо акрилнитрила можно брать метиловый или этиловый эфир акриловой кислоты. Реакцию проводят аналогично получению фталимидопропионитрила, Метиловый эфир фталил- -аланина плавится при 73—75°. Выход 91—93% от теоретич. Т. пл.. этилового эфира фталил- -аланина 70—72°. Выход 74% от теоретич. [c.9]

    N-(p-кapбoк иэтил)-aнaбaзин также получен непосредственным взаимодействием анабазина н акрилонитрила в присутствии 40% НОГО едкого натра с выходом 30%. Метиловый эфир (126) синтезирован из анабазина и метилового эфира. акриловой кислоты. [c.105]

    Важнейшими мономерами для производства каучуков общего назначения являются бутадиен, изопрен, стирол и а-метилстирол. Для синтеза многотоннажных специальных каучуков используются также хлоропрен — для хлоропреновых СК это основной мономер, нитрил акриловой кислоты (акрилонитрил, НАК) — в качестве сомономера для производства бутадиен-нитрмльных каучуков СКН, и изобутилен (метилпропен) —для получения бутилкаучука и полиизобутиленов. Для производства остальных каучуков специального назначения используются этилен (этен), пропилен (пропен), алифатические дигалоген-производные, диорганодихлорсиланы, непредельные фторорга-нические соединения, простые и сложные олигоэфиры, эфиры акриловой кислоты. [c.13]

    Современным высокоэффективным промышленным способом получения эфиров акриловой кислоты является синтез из ацетилена, окиси у.. тгрода и спирта  [c.135]

    Циклоприсоединение [2). В присутствии реагента в качестве катализатора метиленциклопропаны вступают в необычную реакцию шклоприсоединеяия ио связям С С. Например, ири нагревании метиленциклопропана (1) в запаянной ампуле (бО"". 48 час) с избытком метилового эфира акриловой кислоты в ирисутствии А, образуется аддукт 1 1 —метиловый эфир 8-метилеицикло-пентанкарбоновой кислоты (2) с выходом 82 Подходящими субстратами являются также метилвинилкетон и акрилонитрил. Реакция служит удобным методом получения производных метилен-циклопентана. [c.7]

    Михаэля с метиловым эфиром акриловой кислоты привела после гидролиза к образованию кислоты, идентичной с кислотой, полученной Хорнером [517], которой приписывают строение ХХХ1П [540]. [c.125]

    Эта кислота идентична с метилированной диметилсульфатом кислотой Хорнера (ХХХП). Таким образом, строение кислоты, полученной Хорнером, как было точно доказано, может быть представлено формулой XXXII. Так как эфир кислоты XXX, синтезированной Кендалом, дает при конденсации с эфиром акриловой кислоты (по способу Михаэля) и последующем гидролизе кислоту, выделенную Хорнером, то строение кислоты, полученной Кендалом, изображается формулой XXX, которая является единственно правильной формулой для оксиндолил-З-пропионовой кислоты. [c.125]

chem21.info

Акриловая кислота — WiKi

Акри́ловая кислота́ (пропе́новая кислота́, этѐнкарбо́новая кислота́) — органическое соединение, карбоновая кислота с формулой СН2=СН−СООН, простейший представитель одноосновных непредельных карбоновых кислот.

Акриловая кислота

Общие

Физические свойства

Термические свойства

Химические свойства

Классификация

Безопасность

Хим. формула C₃H₄O₂
Рац. формула C3h5O2
Состояние жидкость
Молярная масса 72,06 г/моль
Плотность 1,051 г/см³
Т. плав. 13 ℃
Т. кип. 141 ℃
Т. всп. 68 ℃
Энтальпия образования −384,09 кДж/моль
Удельная теплота испарения 45,6 кДж/моль
Удельная теплота плавления 11,16
pKa +4.25
Растворимость в воде смешивается
Номер CAS 79-10-7
PubChem 6581
ChemSpider 6333
Номер EINECS 201-177-9
RTECS AS4375000
ChEBI 1830840714
DrugBank DB02579
Номер ООН 2218

C=CC(=O)O

1S/C3h5O2/c1-2-3(4)5/h3H,1h3,(H,4,5)

Токсичность сильный ирритант
Приводятся данные для стандартных условий (25 ℃, 100 кПа), если не указано иное.

Физические свойства

Акриловая кислота представляет собой бесцветную жидкость с резким запахом, растворимую в воде и органических растворителях. Её плотность при стандартных условиях равна 1,051 г/см3, температура плавления +13 °C, температура кипения +141 °C.

Синтез

Химические свойства

Обладает химическими свойствами карбоновых кислот: взаимодействует с активными металлами, основаниями, с солями более слабых кислот с образованием солей, со спиртами с образованием сложных эфиров.

Акриловая кислота образует соли, хлорангидрид, ангидриды, сложные эфиры, амиды и пр. Она вступает в реакции присоединения, характерные для этиленовых углеводородов. При действии амальгамы натрия в водном растворе и гидрировании в жидкой фазе в присутствии Ni, Pt, Pd в пропионовую кислоту. Присоединение протонных кислот, воды и Nh4 происходит против правила Марковникова с образованием замещённых производных. Как диенофил акриловая кислота участвует в диеновом синтезе. Конденсируется с солями арилдиазония (реакция Меервейна):

n-ClC6h5N2Cl + Ch3=CH−COOH → n-ClC6H5−CH=CH−COOH + N2

При УФ-облучении или в кислых водных растворах (рН = 1), а также в присутствии инициаторов полимеризации образует полиакриловую кислоту ([−СН2−СН(СООН)−]n).

Применение

Для предотвращения полимеризации при хранении добавляют ингибитор — гидрохинон. Перед использованием перегоняют с особой осторожностью — возможна взрывоподобная полимеризация.

Акриловая кислота и её производные используются при производстве акриловых эмульсий для лакокрасочных материалов, пропитки тканей и кожи, в качестве сырья для полиакрилонитрильных волокон и акриловых каучуков, строительных смесей и клеев. Значительная часть акриловой кислоты используется также при производстве суперабсорбентов.

В производстве полимеров широко применяют сложные эфиры акриловой и метакриловой кислот, главным образом метиловые эфиры: метилакрилат и метилметакрилат.

Безопасность

Акриловая кислота сильно раздражает кожные покровы. Раздражает слизистую оболочку глаз (порог раздражающего действия 0,04 мг/л). При попадании в глаза вызывает сильные ожоги роговицы глаза и может вызвать необратимые повреждения. Вдыхание паров может вызвать раздражение дыхательных путей, головную боль, при больших концентрациях или экспозиции — отёк лёгких. Хотя наличие запаха ещё не означает какой-либо угрозы здоровью, необходим мониторинг воздуха. Предельно допустимая концентрация в воздухе составляет 5 мг/м³.

Примечания

  • Kirk-Othmer encyclopedia, 3 ed., v. I, N.Y.-[a.o.], 1978, p. 330-54. А. В. Девекки.
  • Рабинович В. А., Хавин З. Я. Краткий химический справочник. Л.: Химия, 1977. С. 121.

См. также

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.

ru-wiki.org