Теории эфира. Эфир теория эфира


Теории эфира — Википедия

Материал из Википедии — свободной энциклопедии

Теории эфира — теории в физике, предполагающие существование эфира как вещества или поля, которое заполняет пространство и служит средой для передачи и распространения электромагнитных (и, возможно, гравитационных) взаимодействий. Различные теории эфира воплощают различные концепции этой среды или вещества. С момента разработки специальной теории относительности, понятие эфира больше не используется в современной физике.

Исторические модели

Светоносный эфир

В XIX веке светоносный эфир считали средой для распространения света (электромагнитного излучения). Однако ряд экспериментов, проведенных в конце XIX века, таких как эксперимент Майкельсона-Морли, в попытке обнаружить движение земли через эфир не смогли сделать это.

К началу XX века для объяснения всех проведённых к тому времени экспериментов теорию эфира пришлось сделать настолько монструозной и переполненной дополнительными соображениями ad hoc (так, версия Лоренца насчитывала 27 разнообразных гипотез), что создание теории относительности, которая способна была объяснить электромагнитные явления, не прибегая к использованию этой концепции вообще, разрушило теоретические и философские основания использования теории эфира в физике.

Механический гравитационный эфир

С XVI по XIX век различные теории использовали эфир для описания гравитационных явлений. Наиболее известна теория гравитации Лесажа, хотя другие модели предложены Исааком Ньютоном, Бернхардом Риманом и Лордом Кельвином. Ни одна из этих концепций не считается сегодня научным сообществом жизнеспособной.

Видео по теме

Нестандартные толкования в современной физике

Общая теория относительности

Эйнштейн предложил использовать термин «эфир» для обозначения физического пространства в общей теории относительности, но эта терминология никогда не получала широкую поддержку[1].

Мы можем сказать, что, согласно общей теории относительности, пространство обладает физическими свойствами; в этом смысле, таким образом, эфир существует. Согласно общей теории относительности пространство без эфира немыслимо; в таком пространстве не только бы не было никакого распространения света, но и не могли бы существовать никакие стандарты пространства и времени (измерительных масштабов и часов), и, следовательно, никакие пространственно-временные интервалы в физическом понимании. Но этот эфир не может рассматриваться как наделенная какими-либо качественными характеристиками весомая среда, состоящая из частей, которые могут быть прослежены с течением времени. Идея движения к нему неприменима.

Оригинальный текст (англ.)

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.

Einstein, Albert: "Ether and the Theory of Relativity" (1920), republished in Sidelights on Relativity (Methuen, London, 1922)

Квантовый вакуум

Квантовая механика может описывать пространство как непустое в чрезвычайно малых масштабах. Поль Дирак предположил, что этот квантовый вакуум может быть эквивалентом в современной физике понятию эфира[2]. Однако гипотеза Дирака мотивирована его неудовлетворённостью по поводу квантовой электродинамики, и она никогда не получала широкой поддержки со стороны научного сообщества.

Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:

Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу[3].

Теория волны-пилота

В непринятой научным сообществом теории, которая должна была заменить квантовую механику, Луи де Бройль заявлял:

Любая частица, даже изолированная, должна быть представлена в непрерывном «энергетическом контакте» со скрытой средой[4][5].

Тёмная материя и тёмная энергия как эфир

В настоящее время некоторые ученые[источник не указан 655 дней] начинают видеть в тёмной материи и тёмной энергии новый взгляд на концепцию эфира. Кроме того, эфиром иногда называют гипотетические отклонения от Лоренц-инвариантности определённого типа. Необходимо подчеркнуть, однако, что с историческим понятием эфира как светоносной среды эти толкования не имеют практически ничего общего.

См. также

Примечания

  1. ↑ Kostro, L. An outline of the history of Einstein's relativistic ether concept // Studies in the history of general relativity / Jean Eisenstaedt & Anne J. Kox. — Boston-Basel-Berlin: Birkäuser, 1992. — С. 260—280. — ISBN 0-8176-3479-7.
  2. ↑ Dirac, Paul. Is there an Aether? // Nature. — 1951. — № 168. — С. 906.
  3. ↑ Laughlin, Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY : Basic Books, 2005. — P. 120—121. — ISBN 978-0-465-03828-2.
  4. ↑ Louis de Broglie. Annales de la Fondation. — 1987. — Вып. 12. — № 4.
  5. ↑ Foundations of Physics, Volume 13, Issue 2. — Springer, 1983. — P. 253-286. — «It is shown that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether». — DOI:10.1007/BF01889484.

Литература

  • Декарт Рене. Первоначала философии // Сочинения в двух томах. — М.: Мысль, 1989. — Т. I.
  • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
  • Спасский Б. И. История физики. — М.: Высшая школа, 1977.
  • Терентьев И. В. История эфира. — М.: ФАЗИС, 1999. — 176 с. — ISBN 5-7036-0054-5.
  • Уиттекер Э. История теории эфира и электричества. — М.: Регулярная и хаотическая динамика, 2001. — 512 с. — ISBN 5-93972-070-6.
  • Клапдор-Клайнгротхаус Г. В., Штаудт А. Неускорительная физика элементарных частиц. — М.: Наука, Физматлит, 1997.
  • Whittaker, Edmund Taylor. A History of the theories of aether and electricity. — 1. — Dublin: Longman, Green and Co., 1910.
  • Schaffner, Kenneth F. Nineteenth-century aether theories. — Oxford: Pergamon Press, 1972. — ISBN 0-08-015674-6.
  • Darrigol, Olivier. Electrodynamics from Ampére to Einstein. — Oxford: Clarendon Press, 2000. — ISBN 0-19-850594-9.
  • Maxwell James Clerk. Ether // Encyclopædia Britannica Ninth Edition. — 1878. — Вып. 8. — С. 568—572.
  • Harman P.H. Energy, Force and Matter: The Conceptual Development of Nineteenth Century Physics. — Cambridge: Cambridge University Press, 1982. — ISBN 0-521-28812-6.
  • Christopher A. Decaen. Aristotle's Aether and Contemporary Science // The Thomist. — 2004. — Вып. 68. — С. 375—429. (недоступная ссылка)
  • Joseph Larmor, "Ether", Encyclopædia Britannica, Eleventh Edition (1911).
  • Oliver Lodge, "Ether", Encyclopædia Britannica, Thirteenth Edition (1926).
  • Epple M. Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy // Arch. Hist. Exact Sci. — 1998. — № 52. — С. 297—392.

Ссылки

wikipedia.green

Теории эфира Википедия

Теории эфира — теории в физике, предполагающие существование эфира как вещества или поля, которое заполняет пространство и служит средой для передачи и распространения электромагнитных (и, возможно, гравитационных) взаимодействий. Различные теории эфира воплощают различные концепции этой среды или вещества. С момента разработки специальной теории относительности, понятие эфира больше не используется в современной физике.

Исторические модели[ | код]

Светоносный эфир[ | код]

В XIX веке светоносный эфир считали средой для распространения света (электромагнитного излучения). Однако ряд экспериментов, проведенных в конце XIX века, таких как эксперимент Майкельсона-Морли, в попытке обнаружить движение земли через эфир не смогли сделать это.

К началу XX века для объяснения всех проведённых к тому времени экспериментов теорию эфира пришлось сделать настолько монструозной и переполненной дополнительными соображениями ad hoc (так, версия Лоренца насчитывала 27 разнообразных гипотез), что создание теории относительности, которая способна была объяснить электромагнитные явления, не прибегая к использованию этой концепции вообще, разрушило теоретические и философские основания использования теории эфира в физике.

Механический гравитационный эфир[ | код]

С XVI по XIX век различные теории использовали эфир для описания гравитационных явлений. Наиболее известна теория гравитации Лесажа, хотя другие модели предложены Исааком Ньютоном, Бернхардом Риманом и Лордом Кельвином. Ни одна из этих концепций не считается сегодня научным сообществом жизнеспособной.

Нестандартные толкования в современной физике[ | код]

Общая теория относительности[ | код]

Эйнштейн предложил использовать термин «эфир» для обозначения физического пространства в общей теории относительности, но эта терминология никогда не получала широкую поддержку[1].

Мы можем сказать, что, согласно общей теории относительности, пространство обладает физическими свойствами; в этом смысле, таким образом, эфир существует. Согласно общей теории относительности пространство без эфира немыслимо; в таком пространстве не только бы не было никакого распространения света, но и не могли бы существовать никакие стандарты пространства и времени (измерительных масштабов и часов), и, следовательно, никакие пространственно-временные интервалы в физическом понимании. Но этот эфир не может рассматриваться как наделенная какими-либо качественными характеристиками весомая среда, состоящая из частей, которые могут быть прослежены с течением времени. Идея движения к нему неприменима.

Оригинальный текст (англ.)

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.

Einstein, Albert: "Ether and the Theory of Relativity" (1920), republished in Sidelights on Relativity (Methuen, London, 1922)

ru-wiki.ru

:: * ' Leforio - Левитация. Теория лучевого эфира Лалетин А.П.

Лалетин А.П. Теория лучевого эфира

  Если ранее я полагал что потоки лучевого эфира берут свое начало из катаклизмов нашего мира, то теперь, когда стало понятно что наш мир далеко не единственный во всей вселенной, что существует бесконечное множество миров, разделенных по скоростям и направлениям движения в бесконечных просторах вселенной, ясно  вырисовывается совершенно иная  суть  эфирных потоков.

 

   Размер воспринимаемых фрагментов пролетающего сквозь нас мира обратно пропорционален скорости его пролета сквозь нас, потому совершенно очевидно, что существуют миры со скоростями в десятки и сотни и тысячи световых махов.  Потому лучевой эфир, это весь комплекс миров, пролетающих сквозь нас с различными скоростями, и потому он содержит фрагменты материи любых размерных порядков.

 

  Механизм зависимости размеров фрагментов от скорости пролета довольно прост. Если в статике атом успевает продемонстрировать нам гигантское количество оборотов своего орбитального вещества, то пролетая сквозь нас со скоростью равной скорости движения его орбитальных фрагментов по его орбите, он не успеет показать нам ни одного витка.  То есть мы воспримем его не как атом, а как составные его части пролетающие нас насквозь.

 

 Если же скорость пролета  будет еще выше, то и эти фрагменты станут для нас лишь составляющими их пылинками.  И так до бесконечности, потому что материя является орбитальными формированиями из более мелких орбитальных формирований до бесконечности вглубь.

 

   Существование во вселенной достаточного количества материи имеющей полный и совершенно неограниченный спектр скоростей и направлений движения реально  наблюдается в окружающем нас космосе.

 

 

Абсолютно все процессы мироздания являются контактным механическим взаимодействием фрагментов материи в пустоте пространства. 

 

Абсолют - вечная и неизменная субстанция. Абсолют состоит из двух своих противоположностей(антиподов)это материя и пространство. Они обладают абсолютно противоположными свойствами, кроме одного, вечной неуничтожимости.  Если пространство имеет бесконечно великий объем и нулевую массу, то материя имеет нулевой объем и бесконечно великую массу, пространство непрерывно, материя дискретна.  Материя обладает энергией движения, пространство нет.

 

  Мы живем среди бесконечного множества других миров, подобных нашему видимому миру.  Они пролетают сквозь нас со сверх световыми скоростями и потому их вещества воспринимаются нами как потоки мельчайших фрагментов материи.  Чем выше скорость пролетающего сквозь мира, тем меньшие его фрагменты материи мы способны обнаруживать.  Это потому, что любой фрагмент  материи является орбитальной системой состоящей из очень малого по объему количества более мелких фрагментов, а те в свою очередь из еще более мелких, и так до бесконечности вглубь.  Видимость плотного фрагмента создается высокой скоростью вращения орбитальных фрагментов, и потому когда скорость линейного пролета сквозь это вещество соразмерна со скоростью его орбитального вещества, оно перестает восприниматься как видимость плотного фрагмента, а воспринимается уже как только отдельные его составляющие.  Если же скорость пролета увеличить до скорости орбитального вращения этих составляющих, то и они перестанут восприниматься как целые фрагменты, а только уже их составляющие еще более мелкие. И так до бесконечности повышая скорость линейного движения можно уменьшать размеры воспринимаемых фрагментов материи.

 

 Так вот лучевой эфир, тень которого является гравитационным полем, состоит из бесконечного числа пролетающих сквозь нас миров имеющих любые направления и скорости движения.  Как и наш видимый мир является частью гравитационного эфира для тех миров сквозь которые мы пролетаем со скоростью измеряемой световыми махами, то есть в десять, или сто, или тысячи раз превышая скорость света.

 

 Представьте себе теперь сколь мала эта видимая нам част вселенной, если миры летят бесконечно долго со скоростями в тысячи световых махов, и пределов им нет.  А нам все пытаются втемяшить о возникновении вселенной во время какой-то тут вспышки, когда это бесконечно малая песчинка в сравнении вселенских размеров.

 

 

 

Пространство(пустое) – вечное, непрерывное нечто бесконечно великого объема не взаимодействующее с материей. Абсолютная пустота, единственная нематериальная субстанция.  (по причине бесконечной дискретности материи вглубь, в реальности абсолютно пустого объема не наблюдается)

 

Материя(полное) –  вечное, дискретное нечто, совершенно исключающее взаимопроникновение соразмерных фрагментов, что создает эффект массы.

 

Материя не имеет своего мельчайшего фрагмента, любой фрагмент материи является сложной орбитальной системой состоящей из множества более мелких фрагментов материи следующего порядка, и так до бесконечности как вглубь, так и во вне. 

 

 Реальная субстанция всегда имеет объем больше нуля.   

 

Движение - Свойство материи, Материя не существует без движения своих фрагментов.

 

Частица тонкого эфира – сгусток материи не имеющий твердости так как не обжимается потоками эфира.  Это происходит от того, что его размеры находятся как бы в безэфирной зоне, то есть фрагменты эфира следующего вглубь порядка слишком малы, а следующего вовне слишком велики, а сами для себя они так же не годятся на роль эфира.    Создавая гравитацию, сами эти частицы ею не обладают,  потому рыхлые, свободно  рассыпаются на составляющие фрагменты и так же свободно вновь воссоединяются, движатся только прямолинейно по причине неспособности упруго взаимодействовать и иметь спин. 

 

Тонкий эфир – изотропный поток материи всех миров существующих во вселенной.

 

Все миры, для каждого по отдельности являются лучевым эфиром. 

 

 

Грубый, поляризованный, светоносный эфир - изотропный поток материи,  сформированной в шарики равномерным обжатием тонкого эфира.

 

 Шарик материи – образуется из сгустка материи в результате равномерного обжатия его тонким эфиром, в отличии  от частицы тонкого эфира имеет твёрдость,  форму,  гравитационное поле и способен упруго взаимодействовать и вращаться вокруг собственной оси (иметь спин). 

 

Вещество – орбитальное энергообразование из шариков материи сформированных равномерным обжатием тонкого эфира. Имеет температуру и внутреннюю энергию.

 

Чёрная дыра (чд) – сгусток обездвиженных фрагментов материи нашего порядка.(Если же в ЧД произойдет обездвиживание фрагментов следующего порядка вглубь, то она станет в миллионы раз меньше и ее гравитационное поле исчезнет, так как ее тень станет ничтожно малой. При этом количество материи останется прежним.  Это будет иметь вид полной аннигиляции, но только вид, количество материи при этом не изменится.)

 

 

Масса – количество материи и энергии.  Проявляется только при попытках взаимопроникновения соразмерных фрагментов материи. Фрагменты более малого порядка свободно пролетают сквозь фрагменты большего, без контактного взаимодействия. И потому в этом случае их масса не проявляется. Так же размер фрагментов материи зависит от их энергии, потому возможно существование таких сгустков материи в которых количество материи будет гигантским, но в виду отсутствия внутренней энергии, размер его будет столь ничтожен, что его масса не будет проявляться по причине отсутствия контактного взаимодействия с фрагментами нашего порядка. 

 

Вес — разница эфирного давления на непроницаемые фрагменты материи. Зависит только от объема непроницаемого для эфира.  

 

 

 Инерция  – вечное состояние покоя материи относительно пространства. Существует по причине невозможности движения относительно  пространства.

 

 Упругость-свойство материального объекта быстро восстанавливать свой объем и форму, причина упругости, внутреннее давление, создаваемое внешним обжатием лучевого эфира.

 

Волна - цикличное линейное движение фрагментов материи.

 

 

Энергия –   Количество движения материи.

 

Сила -  энергия совершающая работу.

 

Работа - перевод материи в иную инерциальную систему, либо препятствование этому.

 

Мощность - количество энергии в единицу времени совершения работы.

 

Импульс -  энергия столкновения фрагментов материи.   

 

Инерциальная система отсчета,  ИСО это совокупность взаимно статичных фрагментов материи, находящихся в свободном, инерционном движении.

 

Температура вещества - скорость вращения внешних орбитальных фрагментов.

 

Гравитационное поле  –  суммарная аномалия  потоков эфира вокруг объекта.  Эфирная тень от непроницаемых сгустков материи объекта.  Зависит от количества материи,  занимаемого ею объема, скорости вращения ее фрагментов,  температуры вещества, интенсивности собственного излучения объекта  и мощности внешнего изотропного эфирного потока. 

 

Гравитоны- фрагменты тонкого эфира. Но полную силу гравитации создают все существующие соразмерные частицы(фрагменты)всех космических излучений, и потому они так же являются гравитонами в момент создания сил гравитации.

 

Излучение - поток соразмерных фрагментов материи, подразделяется на обладающие частотными характеристиками,  сплошные не имеющие частотных характеристик и сложносоставные. Волновые  колебания потока бывают по его насыщенности, либо по частоте орбитального вращения фрагментов.

 

Информация, это знание в мыслях сознательной сущности.

 

Только разделение на таковую информацию, и информационные данные, на основании обретения которых сознание еще только потенциально способно обрести информацию, позволяет дать точное и окончательное определение, что есть информация.

 

 

Свет -  луч поляризованного эфира, прошедший сквозь энерговозбуждённую зону. (Энергетически подкрашенный до видимости эфирный луч)   

 

Магнитное и электромагнитное поле - аномалия поляризованного эфира образуемая собственным излучением объекта такого же поляризованного эфирного излучения.  

 

Электрический ток - упорядоченный поток шариков грубого эфира, их сила вращения вокруг собственной оси определяет напряжение тока, их количество определяет силу тока, направление вращения определяет полярность тока.

 

 

Время есть информация о движении материи.

 

 Информация есть мысль в сознании сущности, возникшая на основании осознания информативных данных.

 

 Информативные данные, это разнообразие вариаций материального носителя.  Они могут быть как искусственного, так и естественного происхождения.

 

Только сознание обладающее: логикой, анализом, синтезом, памятью и прогнозом способно мыслить, и потому только таковое сознание способно воспринимать информ данные  движения материи, и как следствие этого, синтезировать понятие-время.

 

  Длительность(движения), это основной продукт сознания составляющий понятие, время. Именно мысль о длительности движения является родительской идеей понятия время. Если переходить от общего понятия время на конкретный его смысл, то указывается именно конкретная временная длительность. Длительность виртуальна так же как и само понятие время.

 

 

Непрерывность - свойство  пространства.

 

Дискретность - свойство материи. 

 

Ускорение - нарушение состояния покоя. Непрерывная череда переходов в иную ИСО по некому единому направлению.

 

Дальнодействие, то есть физическое воздействие через пустоту пространства без материального посредника НЕВОЗМОЖНО. 

 

Макро и микро миры абсолютно аналогичны, и различаются только по скорости происходящих процессов и размерам. 

 

Материя и пространство проявляются исключительно диаметральностью своих свойств и одно без другого было бы просто необнаружимо.   

 

 

Реальность, это материя в пустоте пространства, имеющая внутреннюю самогармонизацию до уровня живых,  сознательных  сущностей .

 

 

Сознание  есть наисложнейший мульти комплекс обусловленностей в памяти и прогнозе логического механизма живой сущности, имеющий привязку к происходящим процессам взаимодействия.

 

 

Виртуальность, это образы сознания, они могут иметь реальные прообразы, а могут и не иметь таковых вовсе. Восприятие действительности виртуально, а сама действительность реальна. В нашем сознании виртуально все, кроме носителя сознания, он материален и потому реален.

 

Все виртуальное сознание можно подразделить на образы абсолютно виртуальные и образы имеющие свои материальные прообразы.

 

 

Живой организм, это симбиоз множества живых организмов следующего вглубь размерного порядка. Как фрагменты материи всегда являются орбитальными системами из фрагментов меньшего порядка чередуясь до бесконечности вглубь, так же и живые организмы всегда состоят из живых организмов меньшего порядка чередуясь до бесконечности вглубь. Таковой принцип строения материи и живого организма делает их заведомо непостижимыми по причине недостижимости бесконечности.

 

 

Суммарная энергия вселенной равна нулю. То есть в случае контакта всей материи вселенной, движение прекратилось бы, но это невозможно по причине бесконечности вселенной. Пижонское утверждение по причине абсолютной непроверяемости.

 

 

 

Существование лучевого эфира подтверждается экспериментально: Вывешивается круглая болванка на кварцевой нити в течении суток она совершенно успокаивается по вращению. После успокоения по касательной устанавливаются стальные листы так что каждый лист загораживает проникновение лучей со своей стороны на левую от оси подвеса сторону болванки. Общая масса листов не менее 2 тонн. Материал болванки не магнитный и лучше вообще не токопроводный во избежание домыслов. После установки листов болванка начинает вращение в расчетную сторону, то есть против час стрелки если смотреть сверху.

 

Теория лучевого эфира Лалетин А.П.

www.leforio.narod.ru

Теории эфира — Википедия

Материал из Википедии — свободной энциклопедии

Теории эфира — теории в физике, предполагающие существование эфира как вещества или поля, которое заполняет пространство и служит средой для передачи и распространения электромагнитных (и, возможно, гравитационных) взаимодействий. Различные теории эфира воплощают различные концепции этой среды или вещества. С момента разработки специальной теории относительности, понятие эфира больше не используется в современной физике.

Светоносный эфир[править | править код]

В XIX веке светоносный эфир считали средой для распространения света (электромагнитного излучения). Однако ряд экспериментов, проведенных в конце XIX века, таких как эксперимент Майкельсона-Морли, в попытке обнаружить движение земли через эфир не смогли сделать это.

К началу XX века для объяснения всех проведённых к тому времени экспериментов теорию эфира пришлось сделать настолько монструозной и переполненной дополнительными соображениями ad hoc (так, версия Лоренца насчитывала 27 разнообразных гипотез), что создание теории относительности, которая способна была объяснить электромагнитные явления, не прибегая к использованию этой концепции вообще, разрушило теоретические и философские основания использования теории эфира в физике.

Механический гравитационный эфир[править | править код]

С XVI по XIX век различные теории использовали эфир для описания гравитационных явлений. Наиболее известна теория гравитации Лесажа, хотя другие модели предложены Исааком Ньютоном, Бернхардом Риманом и Лордом Кельвином. Ни одна из этих концепций не считается сегодня научным сообществом жизнеспособной.

Нестандартные толкования в современной физике[править | править код]

Общая теория относительности[править | править код]

Эйнштейн предложил использовать термин «эфир» для обозначения физического пространства в общей теории относительности, но эта терминология никогда не получала широкую поддержку[1].

Мы можем сказать, что, согласно общей теории относительности, пространство обладает физическими свойствами; в этом смысле, таким образом, эфир существует. Согласно общей теории относительности пространство без эфира немыслимо; в таком пространстве не только бы не было никакого распространения света, но и не могли бы существовать никакие стандарты пространства и времени (измерительных масштабов и часов), и, следовательно, никакие пространственно-временные интервалы в физическом понимании. Но этот эфир не может рассматриваться как наделенная какими-либо качественными характеристиками весомая среда, состоящая из частей, которые могут быть прослежены с течением времени. Идея движения к нему неприменима.

Оригинальный текст (англ.)

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.

Einstein, Albert: "Ether and the Theory of Relativity" (1920), republished in Sidelights on Relativity (Methuen, London, 1922)

Квантовый вакуум[править | править код]

Квантовая механика может описывать пространство как непустое в чрезвычайно малых масштабах. Поль Дирак предположил, что этот квантовый вакуум может быть эквивалентом в современной физике понятию эфира[2]. Однако гипотеза Дирака мотивирована его неудовлетворённостью по поводу квантовой электродинамики, и она никогда не получала широкой поддержки со стороны научного сообщества.

Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:

Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу[3].

Теория волны-пилота[править | править код]

В непринятой научным сообществом теории, которая должна была заменить квантовую механику, Луи де Бройль заявлял:

Любая частица, даже изолированная, должна быть представлена в непрерывном «энергетическом контакте» со скрытой средой[4][5].

Тёмная материя и тёмная энергия как эфир[править | править код]

В настоящее время некоторые ученые[источник не указан 655 дней] начинают видеть в тёмной материи и тёмной энергии новый взгляд на концепцию эфира. Кроме того, эфиром иногда называют гипотетические отклонения от Лоренц-инвариантности определённого типа. Необходимо подчеркнуть, однако, что с историческим понятием эфира как светоносной среды эти толкования не имеют практически ничего общего.

  1. ↑ Kostro, L. An outline of the history of Einstein's relativistic ether concept // Studies in the history of general relativity / Jean Eisenstaedt & Anne J. Kox. — Boston-Basel-Berlin: Birkäuser, 1992. — С. 260—280. — ISBN 0-8176-3479-7.
  2. ↑ Dirac, Paul. Is there an Aether? // Nature. — 1951. — № 168. — С. 906.
  3. ↑ Laughlin, Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY : Basic Books, 2005. — P. 120—121. — ISBN 978-0-465-03828-2.
  4. ↑ Louis de Broglie. Annales de la Fondation. — 1987. — Вып. 12. — № 4.
  5. ↑ Foundations of Physics, Volume 13, Issue 2. — Springer, 1983. — P. 253-286. — «It is shown that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether». — DOI:10.1007/BF01889484.
  • Декарт Рене. Первоначала философии // Сочинения в двух томах. — М.: Мысль, 1989. — Т. I.
  • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
  • Спасский Б. И. История физики. — М.: Высшая школа, 1977.
  • Терентьев И. В. История эфира. — М.: ФАЗИС, 1999. — 176 с. — ISBN 5-7036-0054-5.
  • Уиттекер Э. История теории эфира и электричества. — М.: Регулярная и хаотическая динамика, 2001. — 512 с. — ISBN 5-93972-070-6.
  • Клапдор-Клайнгротхаус Г. В., Штаудт А. Неускорительная физика элементарных частиц. — М.: Наука, Физматлит, 1997.
  • Whittaker, Edmund Taylor. A History of the theories of aether and electricity. — 1. — Dublin: Longman, Green and Co., 1910.
  • Schaffner, Kenneth F. Nineteenth-century aether theories. — Oxford: Pergamon Press, 1972. — ISBN 0-08-015674-6.
  • Darrigol, Olivier. Electrodynamics from Ampére to Einstein. — Oxford: Clarendon Press, 2000. — ISBN 0-19-850594-9.
  • Maxwell James Clerk. Ether // Encyclopædia Britannica Ninth Edition. — 1878. — Вып. 8. — С. 568—572.
  • Harman P.H. Energy, Force and Matter: The Conceptual Development of Nineteenth Century Physics. — Cambridge: Cambridge University Press, 1982. — ISBN 0-521-28812-6.
  • Christopher A. Decaen. Aristotle's Aether and Contemporary Science // The Thomist. — 2004. — Вып. 68. — С. 375—429. (недоступная ссылка)
  • Joseph Larmor, "Ether", Encyclopædia Britannica, Eleventh Edition (1911).
  • Oliver Lodge, "Ether", Encyclopædia Britannica, Thirteenth Edition (1926).
  • Epple M. Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy // Arch. Hist. Exact Sci. — 1998. — № 52. — С. 297—392.

ru.wikiyy.com

Эфир (физика) - это... Что такое Эфир (физика)?

У этого термина существуют и другие значения, см. Эфир.

Эфир (светоносный эфир, от др.-греч. αἰθήρ, верхний слой воздуха; лат. aether) — гипотетическая всепроникающая среда[1], колебания которой проявляют себя как электромагнитные волны (в том числе как видимый свет). Концепция светоносного эфира была выдвинута в XVII веке Рене Декартом и получила подробное обоснование в XIX веке в рамках волновой оптики и электромагнитной теории Максвелла. Эфир рассматривался также как материальный аналог ньютоновского абсолютного пространства. Существовали и другие варианты теории эфира.

В конце XIX века в теории эфира возникли непреодолимые трудности, вынудившие физиков отказаться от понятия эфира и признать электромагнитное поле самодостаточным физическим объектом, не нуждающимся в дополнительном носителе. Абсолютное пространство было упразднено специальной теорией относительности. Неоднократные попытки отдельных учёных возродить концепцию эфира в той или иной форме (например, связать эфир с физическим вакуумом) успеха не имели.

История

Античные представления

Из немногочисленных дошедших до нас трудов древнегреческих учёных можно понять, что эфир тогда понимался как особое небесное вещество, «заполнитель пустоты» в Космосе[2]. Платон в диалоге «Тимей» сообщает, что Бог создал мир из эфира. Демокрит термин эфир не использовал. Лукреций Кар в поэме «О природе вещей» упоминает, что «эфир питает созвездья», то есть светила состоят из сгущённого эфира.

Несколько более подробная картина изложена в трудах Аристотеля. Он также считал, что планеты и другие небесные тела состоят из эфира (или квинтэссенции), который есть «пятый элемент» природы, причём, в отличие от остальных (огня, воды, воздуха и земли), вечный и неизменный. Аристотель писал: «Солнце не состоит из огня; оно есть огромное скопление эфира; теплота Солнца причиняется действием его на эфир во время обращения вокруг Земли». Эфир также заполняет весь внеземной Космос, начиная со сферы Луны; из приведенной цитаты можно сделать вывод, что эфир Аристотеля передаёт свет от Солнца и звёзд, а также тепло от Солнца. Аристотелевское понимание термина переняли средневековые схоласты; оно продержалось в науке до XVII века.

Светоносный эфир Декарта (XVII век)

Рене Декарт

Гипотеза о существовании светоносного эфира была выдвинута в 1618 году Рене Декартом и развита в его «Началах философии» (1644). В соответствии со своей (картезианской) натурфилософией Декарт рассматривал эфир как «тонкую материю», подобную жидкости, механические свойства которой определяют законы распространения света. Эфир Декарта заполнял всё свободное от материи пространство Вселенной, однако не оказывал сопротивления при движении в нём вещественных тел. Надо отметить, что пустоты́ Декарт, как и Аристотель, не признавал, и параграфы 16 и 20 «Начал философии» («О том, что не может быть пустоты» и «О невозможности существования атомов») специально посвятил опровержению атомизма.

Как и прочая материя, картезианский эфир находится в постоянном движении, преимущественно в форме вихрей. Возникающие при этом взаимное давление и центробежная сила отбрасывает шаровидные частицы эфира прочь от источника — наблюдатель воспринимает это движение как распространение света[3]. Скорость света Декарт считал бесконечной. Он построил также оригинальную теорию цвета, по которой разные цвета получаются из-за разных скоростей вращения эфирных частиц.

Учение Декарта о свете было существенно развито Гюйгенсом в его «Трактате о свете» (Traité de la lumière, 1690). Гюйгенс рассматривал свет как волны в эфире и разработал математические основы волновой оптики.

В конце XVII века были открыты несколько необычных оптических явлений, которые следовало согласовать с моделью светоносного эфира: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин, изучено Гюйгенсом), оценка скорости света (1675, Рёмер)[4]. Наметились два варианта физической модели света:

  • Эмиссионная (или корпускулярная) теория: свет есть поток частиц, излучаемых источником. В пользу этого мнения говорила прямолинейность распространения света, на которой основана геометрическая оптика, однако дифракция и интерференция плохо укладывались в эту теорию.
  • Волновая: свет есть всплеск в эфире. Надо принять во внимание, что под волной тогда понимали не бесконечное периодическое колебание, как в современной теории, а одиночный импульс[5]; по этой причине объяснения световых явлений с волновых позиций были мало правдоподобны.

Интересно отметить, что концепция светоносного эфира Декарта—Гюйгенса стала вскоре общепринятой в науке и не пострадала от развернувшихся в XVII—XVIII веках споров картезианцев и атомистов[6][7], а также сторонников эмиссионной и волновой теории. Даже Исаак Ньютон, склонявшийся скорее к эмиссионной теории, допускал, что в указанных эффектах принимает участие и эфир[8]. В трудах Ньютона эфир упоминается очень редко (в основном в ранних работах), хотя в личных письмах он иногда позволял себе «измышлять гипотезы» о возможной роли эфира в оптических, электрических и гравитационных явлениях.

Благодаря авторитету Ньютона, эмиссионная теория света в XVIII веке стала общепринятой. Эфир рассматривался не как носитель, но как переносчик световых частиц, а преломление и дифракцию света объясняли изменением плотности эфира — вблизи тел (дифракция) или при переходе света из одной среды в другую (преломление)[9]. В целом эфир как часть системы мира отошёл в XVIII веке на задний план, однако теория эфирных вихрей сохранилась, и были безуспешные попытки применить её для объяснения магнетизма и гравитации[10].

Развитие моделей эфира в XIX веке

Волновая теория света

В начале XIX века волновая теория света, рассматривавшая свет как волны в эфире, одержала решительную победу над эмиссионной теорией. Первый удар по эмиссионной теории нанёс английский учёный-универсал Томас Юнг, в 1800 году разработавший волновую теорию интерференции (и ввёл сам этот термин) на основе сформулированного им принципа суперпозиции волн. По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах.

Огюстен Жан Френель

Вначале теория Юнга была встречена враждебно. Как раз в это время было глубоко изучено явление двойного лучепреломления и поляризации света, воспринятое как решающее доказательство в пользу эмиссионной теории. Но тут в поддержку волновой модели (ничего не зная о Юнге) выступил Огюстен Жан Френель. Рядом остроумных опытов он продемонстрировал чисто волновые эффекты, совершенно необъяснимые с позиций корпускулярной теории, а его мемуар, содержащий всестороннее исследование с волновых позиций и математическую модель всех известных тогда свойств света (кроме поляризации), победил на конкурсе Парижской Академии наук (1818). Курьёзный случай описывает Араго: на заседании комиссии академиков Пуассон выступил против теории Френеля, так как из неё следовало, что при определённых условиях в центре тени от непрозрачного кружка мог появиться ярко освещённый участок. На следующем заседании Френель продемонстрировал членам комиссии этот эффект.

Юнг и Френель изначально рассматривали свет как упругие (продольные) колебания разрежённого, но чрезвычайно упругого эфира, подобные звуку в воздухе. Любой источник света запускает упругие колебания эфира, которые происходят с гигантской, нигде больше не отмеченной в природе частотой, благодаря чему достигается распространение их с колоссальной скоростью[11]. Любое вещественное тело притягивает эфир, который проникает внутрь тела и сгущается там. От плотности эфира в прозрачном теле зависел коэффициент преломления света[12].

Оставалось понять механизм поляризации. Ещё в 1816 году Френель обсуждал возможность того, что световые колебания эфира не продольны, а поперечны. Это легко объяснило бы явление поляризации. Юнг в это время тоже пришёл к такой идее. Однако поперечные колебания ранее встречались только в несжимаемых твёрдых телах, в то время как эфир считали близким по свойствам к газу или жидкости. В 1822—1826 годах Френель представил мемуары с описанием новых опытов и полную теорию поляризации, сохраняющую значение и в наши дни.

Модель Коши-Стокса

Интерес и доверие к концепции эфира в XIX веке резко возросли. Следующие (после 1820-х) почти сто лет обозначены триумфальным успехом волновой оптики во всех областях. Классическая волновая оптика была завершена, поставив в то же время труднейший вопрос: что же представляет собой эфир?

Когда выяснилось, что световые колебания строго поперечны, встал вопрос о том, какими свойствами должен обладать эфир, чтобы допускать поперечные колебания и исключить продольные. А. Навье в 1821 году получил общие уравнения распространения возмущений в упругой среде. Теория Навье была развита О. Л. Коши (1828), который показал, что, вообще говоря, продольные волны также должны существовать[13].

Френель выдвинул гипотезу, согласно которой эфир несжимаем, но допускает поперечные сдвиги. Такое предположение трудно согласовать с полной проницаемостью эфира по отношению к веществу. Д. Г. Стокс объяснил затруднение тем, что эфир подобен смоле: при быстрых деформациях (излучение света) он ведёт себя как твёрдое тело, а при медленных (скажем, при движении планет) пластичен. В 1839 году Коши усовершенствовал свою модель, создав теорию сжимающегося (лабильного) эфира, позднее доработанную У. Томсоном.

Чтобы все эти модели не рассматривались как чисто спекулятивные, из них следовало формально вывести основные эффекты волновой оптики. Однако подобные попытки имели мало успеха. Френель предположил, что эфир состоит из частиц, величина которых сравнима с длиной световой волны. При этом дополнительном предположении Коши удалось обосновать явление дисперсии света. Однако попытки связать, например, френелевскую теорию преломления света с какой-либо моделью эфира оказались неудачны[14].

Эфир и электромагнетизм

Фарадей относился к эфиру скептически и выражал неуверенность в его существовании[15]. С открытием Максвеллом уравнений классической электродинамики теория эфира получила новое содержание.

В ранних работах Максвелл использовал гидродинамические и механические модели эфира, однако подчёркивал, что они служат только для пояснения с помощью наглядной аналогии. Необходимо иметь в виду, что векторного анализа тогда ещё не существовало, и гидродинамическая аналогия понадобилась Максвеллу, в первую очередь, для разъяснения физического смысла дифференциальных операторов (дивергенция, ротор и др.). Позднее (с 1864 года) Максвелл исключил из своих трудов рассуждения по аналогии[16]. Конкретных моделей эфира Максвелл не разрабатывал и не опирался на какие-либо свойства эфира, кроме способности поддерживать ток смещения, то есть перемещение электромагнитных колебаний в пространстве.

Когда эксперименты Г. Герца подтвердили теорию Максвелла, эфир стал рассматриваться как общий носитель света, электричества и магнетизма. Волновая оптика превратилась в органичную часть теории Максвелла, и возникла надежда построить физическую модель эфира на этом фундаменте. Исследованиями в этой области занимались крупнейшие учёные мира. Часть из них (например, сам Максвелл, Умов и Гельмгольц), хотя писала о свойствах эфира, фактически изучала свойства электромагнитного поля. Другая часть (например, Д. Г. Стокс, У. Томсон) пыталась раскрыть природу и свойства собственно эфира — оценить давление в нём, плотность его массы и энергии, связать с атомной теорией. Продолжались также попытки связать эфир с тяготением, однако никакого существенного продвижения в этом направлении не удалось добиться даже Максвеллу[17].

Химизм в попытках понимания эфира (Д. И. Менделеев)
Д. И. Менделеев. Опыт химического понимания мирового эфира. Нью-Йорк — Лондон — Бомбей. 1904

В творчестве Д. И. Менделеева этот вопрос имеет непосредственное отношение к осмыслению им физических причин периодичности. Поскольку свойства элементов пребывают в периодической зависимости от атомных весов (массы), учёный предполагал использовать эти закономерности для решения настоящей проблемы, — определяя причины сил тяготения и благодаря изучению свойств передающей их среды.[18]

Как уже отмечено, предполагалось, что «эфир», заполняющий межпланетное пространство, является средой, передающей свет, тепло и гравитацию. В контексте таких представлений исследования сильно разреженных газов представлялось возможным путём к детерминации названной субстанции, когда свойства «обычного» вещества уже не способны бы были скрывать свойства «эфира»[18].

В одной из своих гипотез Д. И. Менделеев, руководствовался тем, что специфическим состоянием сильно разреженных газов воздуха мог оказаться «эфир» или некий неизвестный инертный газ с очень малым весом, то есть наилегчайший химический элемент. Учёный пишет на оттиске из «Основ химии», на эскизе периодической системы 1871 года: «Легче всех эфир, в миллионы раз»; в рабочей тетради 1874 года он более ясно высказывает свои соображения: «При нулевом давлении у воздуха есть некоторая плотность, это и есть эфир!». Но в его публикациях той поры эти мысли не нашли отражения. Открытие в конце XIX века инертных газов актуализировало вопрос о химической сущности мирового эфира. По предложению Уильяма Рамзая Менделеев включает в периодическую таблицу нулевую группу, оставляя место для более лёгких, чем водород, элементов. По мнению Менделеева, группа инертных газов могла быть дополнена коронием и легчайшим, пока неизвестным элементом, названным им ньютонием, который и составляет мировой эфир. Свои взгляды в апреле 1902 года он развёрнуто излагает в эссе «Попытка химического понимания мирового эфира» (опубликовано на английском языке в 1904 году, на русском — в 1905 году). В заключительной части этого труда Д. И. Менделеев пишет[18][19]:

Представляя эфир газом, обладающим указанными признаками и относящимся к нулевой группе, я стремлюсь прежде всего извлечь из периодического закона то, что он может дать, реально объяснить вещественность и всеобщее распространение эфирного вещества повсюду в природе и его способность проникать все вещества не только газо- или парообразные, но и твёрдые и жидкие, так как атомы наиболее легких элементов, из которых состоят наши обычные вещества, всё же в миллионы раз тяжелее эфирных и, как надо думать, не изменят сильно своих отношений от присутствия столь лёгких атомов, каковы атомы х или эфирные. Понятно само собой, что вопросов является затем и у меня самого целое множество, что на большую часть из них мне кажется невозможным отвечать, и что в изложении своей попытки я не думал ни поднимать их, ни пытаться отвечать на те из них, которые мне кажутся разрешимыми. Писал не для этого свою «попытку», а только для того, чтобы высказаться в таком вопросе, о котором многие, знаю, думают, и о котором надо же начать говорить.

Еще в ранних своих работах Д. И. Менделеев пришёл к методологическим принципам и положениям, получившим развитие в его последующих исследованиях. Он стремится подходить к решению того или иного вопроса, следуя этим общим принципам, создавая философскую концепцию, в пределах которой будет проводиться анализ конкретных данных. Это характерно и для исследований, касающихся данной темы, которые выразились результатами, к ней прямого отношения не имеющими.[20] Движимый идеей обнаружения эфира, Д. И. Менделеев экспериментально начал изучать разреженные газы, и занимаясь этой темой, сформулировал или подтвердил положения кинетической теории и термодинамики, теоретически обосновал условия поведения сжатых газов[21]: получил уравнение идеального газа, содержащее выведенную им универсальную газовую постоянную, и получил вириальные разложения, которые находятся в полном соответствии с первыми приближениями в известных сейчас уравнениях для реальных газов. Очень ценным, но несколько преждевременным, было предложение Д. И. Менделеева о введении термодинамической шкалы температур[18].

Трудности в теории эфира (конец XIX — начало XX века)

В 1728 году английский астроном Брэдли открыл аберрацию света: все звёзды описывают на небосводе малые круги с периодом в один год. С точки зрения эфирной теории света это означало, что эфир неподвижен, и его кажущееся смещение (при движении Земли вокруг Солнца) по принципу суперпозиции отклоняет изображения звёзд. Френель, однако, допускал, что внутри движущегося вещества эфир частично увлекается. Эта точка зрения, казалось, нашла подтверждение в опытах Физо.

Максвелл в 1868 году предложил схему решающего опыта, который после изобретения интерферометра смог осуществить в 1881 году американский физик Майкельсон. Позже Майкельсон и Эдвард Морли повторили опыт несколько раз с возрастающей точностью, но результат был неизменно отрицательным — «эфирного ветра» не существовало.

В 1892 году Г. Лоренц и независимо от него Дж. Фицджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения, из-за чего «эфирный ветер» становится сложнее обнаружить. Оставался, однако, неясным вопрос — отчего длина сокращается в точности в такой степени, чтобы сделать обнаружение эфира (точнее, движения относительно эфира) невозможным. В это же время были открыты преобразования Лоренца, которые вначале посчитали специфическими для электродинамики. Эти преобразования объясняли лоренцево сокращение длины, но были несовместимы с классической механикой, основанной на преобразованиях Галилея. Анри Пуанкаре показал, что преобразования Лоренца эквивалентны принципу относительности для электромагнитного поля; он считал, что эфир существует, но принципиально не может быть обнаружен.

А. Эйнштейн, 1905 г.

Физическая сущность преобразований Лоренца раскрылась после работ Эйнштейна. В статье 1905 года Эйнштейн рассмотрел два постулата: всеобщий принцип относительности и постоянство скорости света. Из этих постулатов сразу вытекали преобразования Лоренца (уже не только для электродинамики), сокращение длины и относительность одновременности событий. Эйнштейн указал в этой же статье на ненужность эфира, поскольку никаких разумных физических атрибутов приписать ему не удалось, а всё то, что считалось динамическими свойствами эфира, вобрала в себя кинематика специальной теории относительности (СТО). С этого момента электромагнитное поле стало рассматриваться не как энергетический процесс в эфире, а как самостоятельный физический объект.

Новые представления победили не сразу, ряд физиков ещё несколько десятилетий после 1905 года делал попытки восстановить доверие к эфирной модели. Дейтон Миллер в 1924 году объявил, что обнаружил «эфирный ветер». Результат Миллера не подтвердился, а намного более точные измерения (различными методами) вновь показали, что «эфирный ветер» отсутствует[23]. Другие физики пытались использовать для доказательства существования эфира эффект Саньяка, однако это явление полностью объясняется в рамках теории относительности[24]. Исследуются также возможные границы применимости теории относительности[25].

Причины отказа от концепции эфира

Главной причиной, по которой физическое понятие эфира было отвергнуто, стал тот факт, что это понятие после разработки СТО оказалось излишним. Из других причин можно назвать противоречивые атрибуты, приписываемые эфиру: неощутимость для вещества, поперечная упругость, немыслимая по сравнению с газами или жидкостями скорость распространения колебаний и др. Дополнительным аргументом стало доказательство дискретной (квантовой) природы электромагнитного поля, несовместимое с гипотезой непрерывного эфира.

В своей статье «Принцип относительности и его следствия в современной физике» (1910)[26] А. Эйнштейн детально объяснил, почему концепция светоносного эфира несовместима с принципом относительности. Рассмотрим, например, магнит, движущийся поперёк замкнутого проводника. Наблюдаемая картина зависит только от относительного движения магнита и проводника и включает появление в последнем электрического тока. Однако с точки зрения теории эфира в разных системах отсчёта картина существенно разная. В системе отсчёта, связанной с проводником, при перемещении магнита меняется напряжённость магнитного поля в эфире, вследствие чего создаётся электрическое поле с замкнутыми силовыми линиями, в свою очередь создающее ток в проводнике. В системе отсчёта, связанной с магнитом, электрическое поле не возникает, а ток создаётся прямым действием изменения магнитного поля на электроны движущегося проводника. Таким образом, реальность процессов в эфире зависит от точки наблюдения, что в физике недопустимо.

Позже, после создания общей теории относительности (ОТО), Эйнштейн предложил возобновить применение термина, изменив его смысл, а именно — понимать под эфиром физическое пространство ОТО[27]. В отличие от светоносного эфира, физическое пространство не субстанционально (например, нельзя приписать точкам пространства собственное движение и самоидентичность), поэтому для пространства, в отличие от эфира Лоренца-Пуанкаре, не возникает трудностей с принципом относительности[28]. Однако большинство физиков предпочло не возвращаться к использованию уже упразднённого термина.

Попытки возврата в физику понятия эфира

Часть учёных и после 1905 года продолжала поддерживать концепцию светоносного эфира, они выдвигали различные альтернативные теории и пытались доказать их экспериментально. Однако неизменно оказывалось, что теория относительности и теории, на ней основанные, находятся в согласии с результатами всех наблюдений и экспериментов, в то время как эфирные теории не могли описать всю совокупность опытных фактов.

В современных научных статьях термин «эфир» используется почти исключительно в работах по истории науки. Например, поиск этого термина в послевоенных выпусках журнала «Успехи физических наук» практически безрезультатен[29]. Тем не менее время от времени появляются предложения воскресить это понятие как полезное для физики.

Часть таких мнений носит скорее терминологический характер. Как уже говорилось выше, ещё Эйнштейн предложил называть эфиром физическое пространство, чтобы подчеркнуть, что оно имеет не только геометрические, но и физические атрибуты. Уиттекер позднее писал: «Мне кажется абсурдным сохранять название „вакуум“ для категории, обладающей таким количеством физических свойств, а вот исторический термин „эфир“ как нельзя лучше подходит для этой цели»[30]. Существенной поддержки эти предложения не получили.

Термин эфир изредка используется в научных работах при создании новой терминологии. Так, например, в работе A. de Gouvêa, Can a CPT violating ether solve all electron (anti)neutrino puzzles?, Phys. Rev. D 66, 076005 (2002) (hep-ph/0204077) под «CPT-нарушающим эфиром» подразумевается лишь определённого вида члены в потенциале нейтринного лагранжиана.

Более радикальные построения, в которых эфир выступает как субстанция (среда), вступают в конфликт с принципом относительности. Такой эфир за счёт очень слабого взаимодействия с обычным миром может приводить к некоторым явлениям, главным из которых является слабое нарушение лоренц-инвариантности теории. Ссылки на некоторые из этих моделей можно найти в SLAC Spires Database.

Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:

Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу.[31]

Однако до настоящего времени не обнаружены какие-либо наблюдаемые физические явления, которые оправдали бы реанимацию концепции субстанционального эфира в какой-либо форме. Подавляющее большинство эфирных теорий пытается объяснить лишь небольшой набор экспериментальных фактов, игнорируя противоречие со многими другими фактами.

Использование термина «эфир» в культуре

Радио появилось задолго до того, как термин эфир вышел из научного употребления, и в профессиональной терминологии медиа-индустрии укоренилось немало связанных с эфиром словосочетаний: программа вышла в эфир, прямой эфир и т. п. Английская версия термина (Ether) присутствует во многих терминах электроники (например, «Ethernet»).

См. также

Примечания

  1. ↑ Эфир — статья из Физической энциклопедии
  2. ↑ Уиттекер, 2001, с. 23.
  3. ↑ Декарт. Первоначала философии, 1989, §64
  4. ↑ Спасский Б. И. История физики. — Т. 1. — С. 122-124.
  5. ↑ Кудрявцев П. С. Курс истории физики. — Т. 1. — С. 221.
  6. ↑ Уиттекер, 2001, с. 31.
  7. ↑ Терентьев И. В. История эфира, 1999, с. 66.
  8. ↑ Вавилов С. И. Исаак Ньютон, глава VI. 2-е доп. изд. — М.-Л.: Изд. АН СССР, 1945. (Переиздание: — М.: Наука, 1989.)
  9. ↑ Уиттекер, 2001, с. 38-39.
  10. ↑ Уиттекер, 2001, с. 126.
  11. ↑ Терентьев И. В. История эфира, 1999, с. 94—95.
  12. ↑ Уиттекер, 2001, с. 138.
  13. ↑ Спасский Б. И. История физики, 1977, Том I, cтр. 262.
  14. ↑ Спасский Б. И. История физики, 1977, Том I, cтр. 264—266.
  15. ↑ Уиттекер, 2001, с. 234.
  16. ↑ Спасский Б. И. История физики, 1977, Том II, cтр. 97—103.
  17. ↑ Уиттекер, 2001, с. 307—308.
  18. ↑ 1 2 3 4 Летопись жизни и деятельности Д. И. Менделеева / Ответственный редактор А. В. Сторонкин. — Л.: Наука, 1984. С. 150, 178, 179.
  19. ↑ Менделеев Д. И. Попытка химического понимания мирового эфира. — СПб.: Типолитография М. П. Фроловой. 1905. С. 5—40
  20. ↑ Керова Л. С. Некоторые особенности творчества Д. И. Менделеева // Эволюция идей Д. И. Менделеева в современной химии. — Л.: Наука. 1984. С. 8, 12
  21. ↑ Беленький М. Д. Глава шестая. Пасьянс // Менделеев. — М.: Молодая гвардия, 2010. — 512 с. — (Жизнь замечательных людей). — 5000 экз. — ISBN 978-5-235-03301-6
  22. ↑ Albert A. Michelson, Edward W. Morley. On the Relative Motion of the Earth and the Luminiferous Ether. The American Journal of Science. III series. Vol. XXII, No. 128, P.120 — 129.
  23. ↑ См. Повторения опыта Майкельсона.
  24. ↑ Малыкин Г. Б. Эффект Саньяка. Корректные и некорректные объяснения. Успехи физических наук, том 170, № 12 (2000)
  25. ↑ Эфир возвращается?
  26. ↑ Эйнштейн А. Собрание научных трудов в четырёх томах. М.: Наука, 1965—1967. Том I, стр. 138.
  27. ↑ Эйнштейн А. Собрание научных трудов в четырех томах. — М.: Наука, 1965—1967. Том I, стр. 682—689.
  28. ↑ Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. — 5-е изд., перераб. и доп. — М.: Наука, 1980. — С. 211-213, 531..
  29. ↑ Поиск в УФН по метаконтексту «эфир»
  30. ↑ Уиттекер, 2001, с. 16.
  31. ↑ Laughlin Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY: Basic Books, 2005. — P. 120–121. — ISBN 978-0-465-03828-2

Литература

biograf.academic.ru

Теории эфира

Теории эфира  — теории в физике, предполагающие существование эфира как вещества или поля, которое заполняет пространство и служит средой для передачи и распространения электромагнитных (и, возможно, гравитационных) взаимодействий. Различные теории эфира воплощают различные концепции этой среды или вещества. С момента разработки специальной теории относительности , понятие эфира больше не используется в современной физике.

Исторические модели

Светоносный эфир

В XIX веке светоносный эфир считали средой для распространения света (электромагнитного излучения). Однако ряд экспериментов, проведенных в конце XIX века, таких как эксперимент Майкельсона-Морли , в попытке обнаружить движение земли через эфир не смогли сделать это.

К началу XX века для объяснения всех проведённых к тому времени экспериментов теорию эфира пришлось сделать настолько монструозной и переполненной дополнительными соображениями ad hoc (так, версия Лоренца насчитывала 27 разнообразных гипотез), что создание теории относительности, которая способна была объяснить электромагнитные явления, не прибегая к использованию этой концепции вообще, разрушило теоретические и философские основания использования теории эфира в физике.

Механический гравитационный эфир

С XVI по XIX век различные теории использовали эфир для описания гравитационных явлений.Наиболее известна теория гравитации Лесажа , хотя другие модели предложены Исааком Ньютоном, Бернхардом Риманом и Лордом Кельвином. Ни одна из этих концепций не считается сегодня научным сообществом жизнеспособной.

Нестандартные толкования в современной физике

Общая теория относительности

Эйнштейн предложил использовать термин «эфир» для обозначения физического пространства в общей теории относительности , но эта терминология никогда не получала широкую поддержку [1] .

Мы можем сказать, что, согласно общей теории относительности, пространство обладает физическими свойствами; в этом смысле, таким образом, эфир существует. Согласно общей теории относительности пространство без эфира немыслимо; в таком пространстве не только бы не было никакого распространения света, но и не могли бы существовать никакие стандарты пространства и времени (измерительных масштабов и часов), и, следовательно, никакие пространственно-временные интервалы в физическом понимании. Но этот эфир не может рассматриваться как наделенная какими-либо качественными характеристиками весомая среда, состоящая из частей, которые могут быть прослежены с течением времени. Идея движения к нему неприменима.

Оригинальный текст  (англ.)

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.

Einstein, Albert: " Ether and the Theory of Relativity " (1920), republished in Sidelights on Relativity (Methuen, London, 1922)

Квантовый вакуум

Квантовая механика может описывать пространство как непустое в чрезвычайно малых масштабах. Поль Дирак предположил, что этот квантовый вакуум может быть эквивалентом в современной физике понятию эфира [2] . Однако гипотеза Дирака мотивирована его неудовлетворённостью по поводу квантовой электродинамики, и она никогда не получала широкой поддержки со стороны научного сообщества.

Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:

Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу [3] .

Теория волны-пилота

В непринятой научным сообществом теории, которая должна была заменить квантовую механику, Луи де Бройль заявлял:

Любая частица, даже изолированная, должна быть представлена в непрерывном «энергетическом контакте» со скрытой средой [4] [5] .

Тёмная материя и тёмная энергия как эфир

В настоящее время некоторые ученые [ источник не указан 674 дня ] начинают видеть в тёмной материи и тёмной энергии новый взгляд на концепцию эфира. Кроме того, эфиром иногда называют гипотетические отклонения от Лоренц-инвариантности определённого типа. Необходимо подчеркнуть, однако, что с историческим понятием эфира как светоносной среды эти толкования не имеют практически ничего общего.

См. также

Примечания

  1. ↑ Kostro, L. An outline of the history of Einstein's relativistic ether concept // Studies in the history of general relativity / Jean Eisenstaedt & Anne J. Kox. — Boston-Basel-Berlin: Birkäuser, 1992. — С. 260—280. — ISBN 0-8176-3479-7 .
  2. ↑ Dirac, Paul. Is there an Aether? // Nature. — 1951. — № 168 . — С. 906 .
  3. ↑ Laughlin, Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY : Basic Books, 2005. — P. 120—121. — ISBN 978-0-465-03828-2 .
  4. ↑ Louis de Broglie. Annales de la Fondation . — 1987. — Вып. 12 . — № 4 .
  5. ↑ Foundations of Physics, Volume 13, Issue 2. — Springer, 1983. — P. 253-286. — «It is shown that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether». — DOI : 10.1007/BF01889484 .

Литература

  • Декарт Рене. Первоначала философии // Сочинения в двух томах . — М. : Мысль, 1989. — Т. I.
  • Кудрявцев П. С. Курс истории физики . — М. : Просвещение, 1974.
  • Спасский Б. И. История физики . — М. : Высшая школа, 1977.
  • Терентьев И. В. История эфира. — М. : ФАЗИС, 1999. — 176 с. — ISBN 5-7036-0054-5 .
  • Уиттекер Э. История теории эфира и электричества. — М. : Регулярная и хаотическая динамика, 2001. — 512 с. — ISBN 5-93972-070-6 .
  • Клапдор-Клайнгротхаус Г. В., Штаудт А. Неускорительная физика элементарных частиц. — М. : Наука, Физматлит, 1997.
  • Whittaker, Edmund Taylor. A History of the theories of aether and electricity . — 1. — Dublin: Longman, Green and Co., 1910.
  • Schaffner, Kenneth F. Nineteenth-century aether theories. — Oxford: Pergamon Press, 1972. — ISBN 0-08-015674-6 .
  • Darrigol, Olivier. Electrodynamics from Ampére to Einstein. — Oxford: Clarendon Press, 2000. — ISBN 0-19-850594-9 .
  • Maxwell James Clerk. Ether  // Encyclopædia Britannica Ninth Edition . — 1878. — Вып. 8 . — С. 568—572 .
  • Harman P.H. Energy, Force and Matter: The Conceptual Development of Nineteenth Century Physics. — Cambridge: Cambridge University Press, 1982. — ISBN 0-521-28812-6 .
  • Christopher A. Decaen. Aristotle's Aether and Contemporary Science  // The Thomist. — 2004. — Вып. 68 . — С. 375—429 .   (недоступная ссылка)
  • Joseph Larmor , " Ether ", Encyclopædia Britannica , Eleventh Edition (1911).
  • Oliver Lodge , "Ether", Encyclopædia Britannica , Thirteenth Edition (1926).
  • Epple M. Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy // Arch. Hist. Exact Sci. — 1998. — № 52 . — С. 297—392 .

Ссылки

www.cruer.com

Теории эфира Вики

Теории эфира — теории в физике, предполагающие существование эфира как вещества или поля, которое заполняет пространство и служит средой для передачи и распространения электромагнитных (и, возможно, гравитационных) взаимодействий. Различные теории эфира воплощают различные концепции этой среды или вещества. С момента разработки специальной теории относительности, понятие эфира больше не используется в современной физике.

Исторические модели[ | код]

Светоносный эфир[ | код]

В XIX веке светоносный эфир считали средой для распространения света (электромагнитного излучения). Однако ряд экспериментов, проведенных в конце XIX века, таких как эксперимент Майкельсона-Морли, в попытке обнаружить движение земли через эфир не смогли сделать это.

К началу XX века для объяснения всех проведённых к тому времени экспериментов теорию эфира пришлось сделать настолько монструозной и переполненной дополнительными соображениями ad hoc (так, версия Лоренца насчитывала 27 разнообразных гипотез), что создание теории относительности, которая способна была объяснить электромагнитные явления, не прибегая к использованию этой концепции вообще, разрушило теоретические и философские основания использования теории эфира в физике.

Механический гравитационный эфир[ | код]

С XVI по XIX век различные теории использовали эфир для описания гравитационных явлений. Наиболее известна теория гравитации Лесажа, хотя другие модели предложены Исааком Ньютоном, Бернхардом Риманом и Лордом Кельвином. Ни одна из этих концепций не считается сегодня научным сообществом жизнеспособной.

Нестандартные толкования в современной физике[ | код]

Общая теория относительности[ | код]

Эйнштейн предложил использовать термин «эфир» для обозначения физического пространства в общей теории относительности, но эта терминология никогда не получала широкую поддержку[1].

Мы можем сказать, что, согласно общей теории относительности, пространство обладает физическими свойствами; в этом смысле, таким образом, эфир существует. Согласно общей теории относительности пространство без эфира немыслимо; в таком пространстве не только бы не было никакого распространения света, но и не могли бы существовать никакие стандарты пространства и времени (измерительных масштабов и часов), и, следовательно, никакие пространственно-временные интервалы в физическом понимании. Но этот эфир не может рассматриваться как наделенная какими-либо качественными характеристиками весомая среда, состоящая из частей, которые могут быть прослежены с течением времени. Идея движения к нему неприменима.

Оригинальный текст (англ.)

We may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the general theory of relativity space without aether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.

Einstein, Albert: "Ether and the Theory of Relativity" (1920), republished in Sidelights on Relativity (Methuen, London, 1922)

Квантовый вакуум[ | код]

Квантовая механика может описывать пространство как непустое в чрезвычайно малых масштабах. Поль Дирак предположил, что этот квантовый вакуум может быть эквивалентом в современной физике понятию эфира[2]. Однако гипотеза Дирака мотивирована его неудовлетворённостью по поводу квантовой электродинамики, и она никогда не получала широкой поддержки со стороны научного сообщества.

Лауреат Нобелевской премии по физике Роберт Б. Лафлин так сказал о роли эфира в современной теоретической физике:

Как это ни парадоксально, но в самой креативной работе Эйнштейна (общей теории относительности) существует необходимость в пространстве как среде, тогда как в его исходной предпосылке (специальной теории относительности) необходимости в такой среде нет… Слово «эфир» имеет чрезвычайно негативный оттенок в теоретической физике из-за его прошлой ассоциации с оппозицией теории относительности. Это печально, потому что оно довольно точно отражает, как большинство физиков на самом деле думают о вакууме… Теория относительности на самом деле ничего не говорит о существовании или несуществовании материи, пронизывающей вселенную… Но мы не говорим об этом, потому что это табу[3].

Теория волны-пилота[ | код]

В непринятой научным сообществом теории, которая должна была заменить квантовую механику, Луи де Бройль заявлял:

Любая частица, даже изолированная, должна быть представлена в непрерывном «энергетическом контакте» со скрытой средой[4][5].

Тёмная материя и тёмная энергия как эфир[ | код]

В настоящее время некоторые ученые[источник не указан 655 дней] начинают видеть в тёмной материи и тёмной энергии новый взгляд на концепцию эфира. Кроме того, эфиром иногда называют гипотетические отклонения от Лоренц-инвариантности определённого типа. Необходимо подчеркнуть, однако, что с историческим понятием эфира как светоносной среды эти толкования не имеют практически ничего общего.

См. также[ | код]

Примечания[ | код]

  1. ↑ Kostro, L. An outline of the history of Einstein's relativistic ether concept // Studies in the history of general relativity / Jean Eisenstaedt & Anne J. Kox. — Boston-Basel-Berlin: Birkäuser, 1992. — С. 260—280. — ISBN 0-8176-3479-7.
  2. ↑ Dirac, Paul. Is there an Aether? // Nature. — 1951. — № 168. — С. 906.
  3. ↑ Laughlin, Robert B. A Different Universe: Reinventing Physics from the Bottom Down. — NY, NY : Basic Books, 2005. — P. 120—121. — ISBN 978-0-465-03828-2.
  4. ↑ Louis de Broglie. Annales de la Fondation. — 1987. — Вып. 12. — № 4.
  5. ↑ Foundations of Physics, Volume 13, Issue 2. — Springer, 1983. — P. 253-286. — «It is shown that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether». — DOI:10.1007/BF01889484.

Литература[ | код]

  • Декарт Рене. Первоначала философии // Сочинения в двух томах. — М.: Мысль, 1989. — Т. I.
  • Кудрявцев П. С. Курс истории физики. — М.: Просвещение, 1974.
  • Спасский Б. И. История физики. — М.: Высшая школа, 1977.
  • Терентьев И. В. История эфира. — М.: ФАЗИС, 1999. — 176 с. — ISBN 5-7036-0054-5.
  • Уиттекер Э. История теории эфира и электричества. — М.: Регулярная и хаотическая динамика, 2001. — 512 с. — ISBN 5-93972-070-6.
  • Клапдор-Клайнгротхаус Г. В., Штаудт А. Неускорительная физика элементарных частиц. — М.: Наука, Физматлит, 1997.
  • Whittaker, Edmund Taylor. A History of the theories of aether and electricity. — 1. — Dublin: Longman, Green and Co., 1910.
  • Schaffner, Kenneth F. Nineteenth-century aether theories. — Oxford: Pergamon Press, 1972. — ISBN 0-08-015674-6.
  • Darrigol, Olivier. Electrodynamics from Ampére to Einstein. — Oxford: Clarendon Press, 2000. — ISBN 0-19-850594-9.
  • Maxwell James Clerk. Ether // Encyclopædia Britannica Ninth Edition. — 1878. — Вып. 8. — С. 568—572.
  • Harman P.H. Energy, Force and Matter: The Conceptual Development of Nineteenth Century Physics. — Cambridge: Cambridge University Press, 1982. — ISBN 0-521-28812-6.
  • Christopher A. Decaen. Aristotle's Aether and Contemporary Science // The Thomist. — 2004. — Вып. 68. — С. 375—429. (недоступная ссылка)
  • Joseph Larmor, "Ether", Encyclopædia Britannica, Eleventh Edition (1911).
  • Oliver Lodge, "Ether", Encyclopædia Britannica, Thirteenth Edition (1926).
  • Epple M. Topology, Matter, and Space, I: Topological Notions in 19th-Century Natural Philosophy // Arch. Hist. Exact Sci. — 1998. — № 52. — С. 297—392.

Ссылки[ | код]

ru.wikibedia.ru