И, наконец, эфир. Эфир химия


ПРОСТЫЕ ЭФИРЫ - Химия

ПРОСТЫЕ ЭФИРЫ – класс органических соединений (см. ХИМИЯ ОРГАНИЧЕСКАЯ), содержащих фрагмент R–O–R", в котором две органические группы соединены атомом кислорода. Прилагательное «простые» в названии эфиров помогает отличить их от другого класса соединений, именуемого сложными эфирами.

Номенклатура простых эфиров. Если группы R и R" в простом эфире одинаковы, то его называют симметричным, если разные – несимметричным. В название эфира включают названия органических групп, упоминая их в алфавитном порядке, и добавляют слово эфир, например, C2H5OC3H7 – пропилэтиловый эфир. Для симметричных эфиров перед названием органической группы вводят приставку «ди», например, C2H5OC2H5 – диэтиловый эфир. Для многих эфиров часто используют тривиальные (упрощенные) названия, сложившиеся исторически. К простым эфирам иногда относят соединения, которые содержат эфирный фрагмент С–О–С в составе циклической молекулы (рис. 1), одновременно их причисляют к другому классу соединений – гетероциклическим соединениям. Есть также соединения (см. АЛЬДЕГИДЫ И КЕТОНЫ), в состав которых входит фрагмент С–О–С, но к классу эфиров их не относят, это полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода: >C(OH)OR, а также ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы: >C(OR)2 (рис. 1). Наличие у одного атома углерода сразу двух химически связанных атомов О делает эти соединения непохожими по химическим свойствам на простые эфиры.

Рис. 1. ПРОСТЫЕ ЭФИРЫ, содержащие эфирный фрагмент в составе циклической молекулы (чаще такие соединения относят к гетероциклическим), а также полуацетали и ацетали, содержащие эфирный фрагмент, но не относящиеся к классу простых эфиров.

Химические свойства простых эфиров. Простые эфиры представляют собой бесцветные жидкости с характерным (так называемым эфирным) запахом, практически не смешиваются с водой и неограниченно смешиваются с большинством органических растворителей. В сравнении со спиртами и альдегидами простые эфиры химически менее активны, например, они устойчивы к действию щелочей и щелочных металлов (металлический Na применяют даже для удаления следов воды из эфиров). В отличие от щелочей, кислоты расщепляют эфирный фрагмент, для этого чаще применяют галоидоводороды, особенно эффективен HI. При комнатной температуре образуется и спирт, и йодистый алкил (рис. 2А), а при нагревании – йодистый алкил и вода (рис.2А), т.е. реакция протекает более глубоко. Простые эфиры, содержащие ароматические циклы, более устойчивы к расщеплению, для них возможна только стадия, аналогичная А, образуется фенол, а йод к ароматическому ядру не присоединяется (рис. 2В).

Рис. 2. РАСЩЕПЛЕНИЕ ЭФИРНОГО ФРАГМЕНТА при действии HI

Атом кислорода в эфирном фрагменте содержит свободную электронную пару С–Ö–C, благодаря этому эфиры оказываются способными присоединять различные нейтральные молекулы, склонные к образованию донорно-акцепторных связей, атом кислорода дает для образования связи электронную пару (донор), роль акцептора, принимающего эту пару, играет присоединяющаяся молекула или ион (см. АМИНЫ). В результате возникают комплексные соединения (рис. 3).

Рис. 3. ОБРАЗОВАНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ С УЧАСТИЕМ ПРОСТЫХ ЭФИРОВ

В присутствии кислорода воздуха на свету эфиры частично окисляются с образованием перекисных соединений R–O–O–R", которые способны взрываться даже при слабом нагреве, поэтому, приступая к перегонке эфира, его предварительно обрабатывают восстановителями, разрушающими перекиси, часто вполне достаточно хранить эфир над металлическим Na.

Получение простых эфиров. Наиболее удобный способ – взаимодействие алкоголятов щелочных металлов R"ONa с алкилгалогенидами RHal, таким методом можно получать как симметричные (рис. 4А), так и несимметричные простые эфиры (рис. 4Б). В промышленности симметричные простые эфиры получают дегидратацией (отщеплением воды) спиртов с помощью серной кислоты (рис. 4В), этот метод позволяет получать эфиры, у которых в органической группе R не более 5 атомов С.

Рис. 4. ПОЛУЧЕНИЕ ПРОСТЫХ ЭФИРОВ

Применение простых эфиров определяется, в основном, тем, что они очень хорошо растворяют многие жиры, смолы и лаки. Наиболее широко используют ДИЭТИЛОВЫЙ ЭФИР (С2Н5)2О, техническое название – «серный эфир», поскольку его получают в присутствии серной кислоты (рис. 4В). Помимо применения в качестве растворителя, а также в роли реакционной среды при проведении различных органических синтезов его используют и для экстрагирования (извлечения) некоторых органических веществ, например, спиртов, из водных растворов, поскольку сам эфир очень мало растворим в воде. В медицине серный эфир применяют для наркоза.Диизопропиловый эфир (СН3)2СНОСН(СН3)2 используют как растворитель и как добавку к моторному топливу для повышения октанового числа. Анизол С6Н5ОСН3 (рис. 4) и ФЕНЕТОЛ С6Н5ОС2Н5 (рис. 3) используют в качестве промежуточных продуктов при получении красителей, лекарств и душистых веществ.Дифениловый эфир (дифенилоксид) (С6Н5)2О из-за высокой температуры кипения (259,3° С) и химической устойчивости применяют как теплоноситель. Чтобы при остывании до комнатной температуры он не переходил в твердое состояние (его т. пл. 28–29° С), в него добавляют дифенил (С6Н5)2. Такая смесь, называемая в технике даутермом, может работать как теплоноситель в широком диапазоне температур.Диоксан, циклический эфир (СН2СН2О)2 (рис.), по химическим свойствам близок обычным простым эфирам, но в отличие от них неограниченно смешивается с водой и большинством органических растворителей. Растворяет жиры, воски, масла, эфиры, целлюлозы, его широко применяют и как реакционную среду при проведении различных органических синтезов.Михаил Левицкий

www.cnru123.com

Доклад - Cложные эфиры - Химия

Содержание стр.

Введение -3-

1. Строение -4-

2. Номенклатура и изомерия -6-

3. Физические свойства и нахождение в природе -7-

4. Химические свойства -8-

5. Получение -9-

6. Применение -10-

6.1 Применение сложных эфиров неорганических кислот -10-

6.2 Применение сложных эфиров органических кислот -12-

Заключение -14-

Использованные источники информации -15-

Приложение -16-

Введение

Среди функциональных производных кислот особое место занимают сложные эфиры — производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.

Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).

Среди сложных эфиров особое место занимают природные эфиры — жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Цель моей работы заключается в подробном ознакомлении с таким классом органических соединений, как сложные эфиры и углублённом рассмотрении области применения отдельных представителей этого класса.

1. Строение

Общая формула сложных эфиров карбоновых кислот:

где R и R' — углеводородные радикалы (в сложных эфиpax муравьиной кислоты R — атом водорода).

Общая формула жиров:

гдеR', R", R"' — углеродные радикалы.

Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят остатки одинаковых кислот (т. е. R’ = R" = R'"), в состав смешанных — различных.

В жирах наиболее часто встречаются следующие жирные кислоты:

Алкановые кислоты

1. Масляная кислота СН3 — (Ch3 )2 — СООН

2. Капроновая кислота СН3 — (Ch3 )4 — СООН

3. Пальмитиновая кислота СН3 — (Ch3 )14 — СООН

4. Стеариновая кислота СН3 — (Ch3 )16 — СООН

Алкеновые кислоты

5. Олеиновая кислота С17 Н33 СООН

СН3 —(СН2 )7 —СН === СН—(СН2 )7 —СООН

Алкадиеновые кислоты

6. Линолевая кислота С17 Н31 СООН

СН3 —(СН2 )4 —СН = СН—СН2 —СН = СН—СООН

Алкатриеновые кислоты

7. Линоленовая кислота С17 Н29 СООН

СН3 СН2 СН = CHCh3 CH == CHCh3 CH = СН(СН2 )4 СООН

2. Номенклатура и изомерия

Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс - ат, например:

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку — с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки —СО—О—. Этот вид изомерии начинаетсясо сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

3. Физические свойства и нахождение в природе

Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат — груши и т. д.

Сложные эфиры высших жирных кислот и спиртов — воскообразные вещества, не имеют запаха, в воде не растворимы.

Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.

Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) — непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.

4. Химические свойства

1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.

3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

5. Получение

1. Реакция этерификации:

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

2. Взаимодействием ангидридов кислот со спиртами:

3. Взаимодействием галоидангидридов кислот со спиртами:

6. Применение

6.1 Применение сложных эфиров неорганических кислот

Эфиры борной кислоты — триалкилбораты — легко получаются нагреванием спирта и борной кислоты с добавкой концентрированной серной кислоты. Борнометиловый эфир (триметилборат) кипит при 65° С, борноэтиловый (триэтилборат) — при 119° С. Эфиры борной кислоты легко гидролизуются водой.

Реакция с борной кислотой служит для установления конфигурации многоатомных спиртов и была неоднократно использована при изучении Сахаров.

Ортокремневые эфиры — жидкости. Метиловый эфир кипит при 122° С, этиловый при 156° С. Гидролиз водой проходит легко уже на холоду, но идет постепенно и при недостатке воды приводит к образованию высоко­молекулярных ангидридных форм, в которых атомы кремния соединены друг с другом через кислород (силоксановые группировки):

Эти высокомолекулярные вещества (полиалкоксисилоксаны) находят применение в качестве связующих, выдерживающих довольно высокую температуру, в частности для покрытия поверхности форм для точной отливки металла.

Аналогично SiCl4 реагируют диалкилдихлорсиланы, например ((СН3 )2 SiCl2, образуя диалкоксильные производные:

Их гидролиз при недостатке воды дает так называемые полиалкилсилоксаны:

Они обладают разным (но очень значительным) молекулярным весом и представляют собой вязкие жидкости, используемые в качестве термо­стойких смазок, а при еще более длинных силоксановых скелетах — термостойкие электроизоляционные смолы и каучуки.

Эфиры ортотитановой кислоты. Их получают аналогично ортокремневым эфирам по реакции:

Это жидкости, легко гидролизующиеся до метилового спирта и TiO2 применяются для пропитки тканей с целью придания им водонепроницаемости.

Эфиры азотной кислоты. Их получают действием на спирты смеси азотной и концентрированной серной кислот. Метилнитрат СН3 ONO2, (т. кип. 60° С) и этилнитрат C2 H5 ONO2 (т. кип. 87° С) при осторожной работе можно перегнать, но при нагревании выше температуры кипения или при детонации они очень сильно взрывают.

Нитраты этиленгликоля и глицерина, неправильно называемые нитрогликолем и нитроглицерином, применяются в качестве взрывчатых веществ. Сам нитроглицерин (тяжелая жидкость) неудобен и опасен в обращении.

Пентрит — тетранитрат пентаэритрита С(Ch3 ONO2 )4, получаемый обработкой пентаэритрита смесью азотной и серной кислот, — тоже сильное взрывчатое вещество бризантного действия.

Нитрат глицерина и нитрат пентаэритрита обладают сосудорасширя­ющим эффектом и применяются как симптоматические средства при сте­нокардии.

Эфиры фосфорной кислоты — высококипящие жидкости, лишь очень медленно гидролизуемые водой, быстрее щелочами и разбавленными кислотами. Эфиры, образованные этерификацией высших спиртов (и фено­лов), находят применение как пластификаторы пластмасс и для извлече­ния солей уранила из водных растворов.

Известны эфиры типа (RO)2S═O, но они не имеют практического значения.

Из алкилсульфатов — солей сложных эфиров высших спиртов и серной кислоты производят моющие средства. В общем виде образование таких солей можно изобразить уравнениями:

Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.

Они и обладают прекрасными моющими способностями. Принцип их действия тот же, что и у обычного мыла, только кислотный остаток серной кислоты лучше адсорбируется частицами загрязнения, а кальцевые соли алкилсерной кислоты растворимы в воде, поэтому это моющее средство стирает и в жесткой, и в морской воде.

6.2 Применение сложных эфиров органических кислот

Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты — ацетаты. Прочие эфиры (кислот молочной — лактаты, масляной — бутираты, муравьиной — формиаты) нашли ограниченное применение. Формиаты из-за сильной омыляемости и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот, а также алкиленкарбонаты. Физико-химические свойства наиболее распространенных сложных эфиров приведены в таблице (см. приложение).

Метилацетат СН3 СООСН3. Отечественной промышленностью технический метилацетат выпускается в виде древесно-спиртового растворителя, в котором содержится 50% (масс.) основного продукта. Метилацетат также образуется в виде побочного продукта при производстве поливинилового спирта. По растворяющей способности метилацетат аналогичен ацетону и применяется в ряде случаев как его заменитель. Однако он обладает большей токсичностью, чем ацетон.

Этилацетат С2 Н5 СООСН3. Получают методом этерификации на лесохимических предприятиях при переработке синтетической и лесохимической уксусной кислоты, гидролизного и синтетического этилового спирта или конденсацией ацетальдегида. За рубежом разработан процесс получения этилацетата на основе метилового спирта. Этилацетат подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести). Добавка 15-20 % этилового спирта повышает растворяющую способность этилацетата в отношении эфиров целлюлозы, особенно ацетилцеллюлозы.

Пропилацетат СН3 СООСН2 СН2 СН3. По растворяющей способности подобен этилацетату.

Изопропилацетат СН3СООСН(СН3 )2. По свойствам занимает промежуточное положение между этил- и пропилацетат.

Амилацетат Ch4 COOCh3 Ch3 Ch3 Ch3 Ch4, т. кип. 148° С, иногда называют «банановым маслом» (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто – сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.

Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.

Винилацетат Ch3 =CHOOCCh4, образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок.

Мыла — это соли высших карбоновых кислот.Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли — жидкие мыла.

Мыла получаются при гидролизе жиров в присутствии щелочей:

Обычное мыло плохо стирает в жесткой воде и совсем не стирает в морской воде, так как содержащиеся в ней ионы кальция и магния дают с высшими кислотами нерастворимые в воде соли:

Ca2+ + 2C17 h45 COONa→Ca(C17 h45 COO)2 ↓ + 2Na+

В настоящее время для стирки в быту, для промывки шерсти и тканей в промышленности используют синтетические моющие средства, которые обладают в 10 раз большей моющей способностью, чем мыла, не портят тканей, не боятся жесткой и даже морской воды.

Заключение

Исходя из вышесказанного, можно сделать вывод, что сложные эфиры находят широкое применение, как в быту, так и в промышленности. Некоторые из сложных эфиров готовятся искусственно и под названием «фруктовых эссенций» широко применяются в кондитерском деле, в производстве прохладительных напитков, в парфюмерии и во многих других отраслях. Жиры используют для многих технических целей. Однако особенно велико их значение как важнейшей составной части рациона человека и животных, наряду с углеводами и белками. Прекращение использования пищевых жиров в технике и замена их непищевыми материалами – одна из важнейших задач народного хозяйства. Эта задача может быть разрешена только при достаточно основательных знаниях о сложных эфирах и дальнейшем изучении этого класса органических соединений.

Использованные источники информации

1. Цветков Л.А. Органическая химия: Учебник для 10-11 классов общеобразовательных учебных заведений. — М.: Гуманит. изд. центр ВЛАДОС, 2001;

2. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2, М.,1969-70.;

3. Глинка Н. Л. Общая химия: Учебное пособие для вузов. – 23-е изд., испр./ Под ред. В. А. Рабиновича. – Л.: Химия, 1983;

4. penza.fio.ru

5. encycl.yandex.ru

Приложение

Физико-химические свойства сложных эфиров

Название Давление пара при 20°С, кПа Молеку- лярная масса Темпера- тура кипения при 101,325 кПа. °С Плотность при 20°С. г/см3 Показа- тель перелом- ления n20 Поверхнос- тное натяжение 20°С. мН/м
Метилацетат 23,19 74,078 56,324 0,9390 1,36193 24,7625,7
Этилацетат 9,86 88,104 77,114 0,90063 1,37239 23,75
Пропилацетат 3,41 102,13 101,548 0,8867 1,38442 20,53
Изопропилацетат 8,40 102,13 88,2 0,8718 1,37730 22,1022
Бутилацетат 2,40 116,156 126,114 0,8813 1,39406 25,2
Изоиутилацетат 1,71 116,156 118 0,8745 1,39018 23,7
Втор-Бутилацетат - 116,156 112,34 0,8720 1,38941 23,3322,1
Гексилацетат - 114,21 169 0,890 - -
Амилацетат 2,09 130,182 149,2 0,8753 1,40228 25,8
Изоамилацетат 0,73 130,182 142 0,8719 1,40535 24,6221,1
Ацетат монометилового эфира этиленгликоля (метилцеллозольвацетат) 0,49 118,0 144,5 1,007 1,4019 -
Ацетат моноэтилового эфира этиленгликоля (этилцеллозольвацетат) 0,17 132,16 156,4 0,9748 1,4030 -
Этиленгликольмоноацетат - 104 181-182 1,108-1,109 - -
Этиленгликольдиацетат 0,05 146 186-190 1,106 - -
Циклогексилацетат 0,97 142 175 0,964 1,4385 -
Этиллактат 0,13 118,13 154,5 1,031 1,4118 28,917,3
Бутиллактат 0,05 146,0 185 0,97 - -
Пропиленкарбонат - 102,088 241,7 1,206 1,4189 -

www.ronl.ru

И, наконец, эфир - Химия углерода - Практическая химия

В заключение рассмотрим эфир, который, помимо его применения в медицине для наркоза, является прекрасным растворителем для жиров и многих других веществ.

Строго говоря, существуют различные простые эфиры, которые так же, как алканали или алканоны, образуют класс соединений со сходными свойствами. Обычный эфир строго должен называться диэтиловым эфиром. Он образуется из двух молекул этанола путем отщепления воды, обычно с помощью концентрированной серной кислоты:

2СН3СН2ОН → (СН3СН2)2О + Н2О

Получим малое количество эфира. Для этого в пробирку нальем около 2 мл денатурата и 1,5 мл концентрированной серной кислоты.

Подберем к пробирке пробку с двумя отверстиями. В одно из них вставим маленькую капельную воронку или просто маленькую воронку с удлиненной трубкой, выход из которой вначале закроем с помощью кусочка резинового шланга и зажима. Используя второе отверстие в пробке, присоединим к пробирке устройство для охлаждения паров —такое же, как и при получении этаналя. Приемник надо непременно охлаждать водой со льдом, потому что эфир кипит уже при 34,6 °С!

Ввиду его необычайно легкой воспламеняемости, холодильник должен быть как можно длиннее (не меньше 80 см), чтобы между источником огня и приемником было достаточное расстояние. По этой же

причине проведем опыт вдали от горючих предметов, на открытом воздухе или в вытяжном шкафу. Нальем в воронку еще около 5 мл денатурата и осторожно нагреем пробирку на асбестированной сетке горелкой Бунзена приблизительно до 140 °С. В приемнике конденсируется очень летучий дистиллят, и в случае недостаточного охлаждения мы почувствуем характерный запах эфира. Осторожно приоткрывая зажим, будем постепенно, малыми порциями добавлять спирт. В конце реакции серная кислота все больше разбавляется образующейся водой, в результате чего образование эфира прекращается и перегоняется уже спирт.

При тщательном выполнении опыта мы получим около 4 мл очень подвижной, прозрачной жидкости, которая состоит в основном из эфира. Если несколько капель его нанести на палец, то почувствуешь сильный холод. Дело в том, что эфир быстро испаряется, а теплота испарения отнимается от окружающей его среды.

На химических предприятиях и в больницах при работе с эфиром случались очень сильные взрывы. При длительном соприкосновении с кислородом воздуха и под влиянием солнечного света в эфире образуются легко взрывающиеся перекиси. Поэтому ни в коем случае не будем хранить большее количество эфира. Оно не понадобится нам ни в одном из опытов. Эфир будет нужен нам только в смеси с двумя частями спирта как растворитель для коллодия. Поэтому остаток эфира сразу разбавим двойным количеством спирта и будем хранить только в виде этой безопасной смеси в надежно закрытой бутылочке из темно-коричневого стекла.

Продолжительное вдыхание паров эфира вызывает потерю сознания, что впервые использовали в 1846 г. Джексон и Мортон для наркоза.

Тщательно очищенный эфир и сейчас применяется с этой целью.

Температура не должна превышать 145 °С, так как при более высокой (около 170°) образуется этен. Даже при работе с малым количеством эфира всегда следует учитывать опасность пожара. Поэтому рекомендуется заменить горелку закрытой электрической плиткой и между источником тепла и приемником установить защитный экран. При использовании капельной воронки надо заранее тщательно смазать и проверить кран. В качестве приемника лучше всего взять плотно присоединенную к холодильнику пробирку с боковым отводом, на который можно надеть резиновый шланг для увеличения расстояния между выходящими парами эфира и источником тепла. Приемник лучше охлаждать смесью льда с солью.

Источник: Э.Гроссе, Х.Вайсмантель, «Химия для любознательных»

www.himhelp.ru


Смотрите также