Удельная теплоемкость: для чего она нужна и в чем ее смысл? Удельная теплоемкость эфира равна
Золото | 129 |
Свинец | 130 |
Иридий | 134 |
Вольфрам | 134 |
Платина | 134 |
Ртуть | 139 |
Олово | 218 |
Серебро | 234 |
Цинк | 380 |
Латунь | 380 |
Медь | 385 |
Константан | 410 |
Железо | 444 |
Сталь | 460 |
Высоколегированная сталь | 480 |
Чугун | 500 |
Никель | 500 |
Алмаз | 502 |
Флинт (стекло) | 503 |
Кронглас (стекло) | 670 |
Кварцевое стекло | 703 |
Сера ромбическая | 710 |
Кварц | 750 |
Гранит | 770 |
Фарфор | 800 |
Цемент | 800 |
Кальцит | 800 |
Базальт | 820 |
Песок | 835 |
Графит | 840 |
Кирпич | 840 |
Оконное стекло | 840 |
Асбест | 840 |
Кокс (0...100 °С) | 840 |
Известь | 840 |
Волокно минеральное | 840 |
Земля (сухая) | 840 |
Мрамор | 840 |
Соль поваренная | 880 |
Слюда | 880 |
Нефть | 880 |
Глина | 900 |
Соль каменная | 920 |
Асфальт | 920 |
Кислород | 920 |
Алюминий | 930 |
Трихлорэтилен | 930 |
Абсоцемент | 960 |
Силикатный кирпич | 1000 |
Полихлорвинил | 1000 |
Хлороформ | 1000 |
Воздух (сухой) | 1005 |
Азот | 1042 |
Гипс | 1090 |
Бетон | 1130 |
Сахар-песок | 1250 |
Хлопок | 1300 |
Каменный уголь | 1300 |
Бумага (сухая) | 1340 |
Серная кислота (100%) | 1340 |
Сухой лед (твердый CO2) | 1380 |
Полистирол | 1380 |
Полиуретан | 1380 |
Резина (твердая) | 1420 |
Бензол | 1420 |
Текстолит | 1470 |
1470 | |
Целлюлоза | 1500 |
Кожа | 1510 |
Бакелит | 1590 |
Шерсть | 1700 |
Машинное масло | 1670 |
Пробка | 1680 |
Толуол | 1720 |
Винилпласт | 1760 |
Скипидар | 1800 |
Бериллий | 1824 |
Керосин бытовой | 1880 |
Пластмасса | 1900 |
Соляная кислота (17%) | 1930 |
Земля (влажная) | 2000 |
Вода (пар при 100 °C) | 2020 |
Бензин | 2050 |
Вода (лед при 0 °C) | 2060 |
Сгущенное молоко | 2061 |
Деготь каменноугольный | 2090 |
Ацетон | 2160 |
Сало | 2175 |
Парафин | 2200 |
Древесноволокнистая плита | 2300 |
Этиленгликоль | 2300 |
Этанол (спирт) | 2390 |
Дерево (дуб) | 2400 |
Глицерин | 2430 |
Метиловый спирт | 2470 |
Говядина жирная | 2510 |
Патока | 2650 |
Масло сливочное | 2680 |
Дерево (пихта) | 2700 |
Свинина, баранина | 2845 |
Печень | 3010 |
Азотная кислота (100%) | 3100 |
Яичный белок (куриный) | 3140 |
Сыр | 3140 |
Говядина постная | 3220 |
Мясо птицы | 3300 |
Картофель | 3430 |
Тело человека | 3470 |
Сметана | 3550 |
Литий | 3582 |
Яблоки | 3600 |
Колбаса | 3600 |
Рыба постная | 3600 |
Апельсины, лимоны | 3670 |
Сусло пивное | 3927 |
Вода морская (6% соли) | 3780 |
Грибы | 3900 |
Вода морская (3% соли) | 3930 |
Вода морская (0,5% соли) | 4100 |
Вода | 4183 |
Нашатырный спирт | 4730 |
Столярный клей | 4190 |
Гелий | 5190 |
Водород | 14300 |
energy.clcnet.ru
Удельная теплоёмкость — урок. Физика, 8 класс.
Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.
Пример:
Для нагревания \(1\) кг воды на \(1 \)°С требуется количество теплоты, равное \(4200\) Дж. А если нагревать \(1\) кг цинка на \(1\) °С, то потребуется всего \(400\) Дж.
Физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой \(1\) кг для того, чтобы его температура изменилась на \(1\) °С, называется удельной теплоёмкостью вещества.
Обрати внимание!
Удельная теплоёмкость обозначается буквой \(с\) и измеряется в Дж/(кг·°С).
Пример:
Удельная теплоёмкость серебра равна \(250\) Дж/(кг·°С). Это означает, что для нагревания серебра массой \(1\) кг на \(1\) °С необходимо количество теплоты, равное \(250\) Дж.
При охлаждении серебра массой \(1\) кг на \(1\) °С выделится количество теплоты, равное \(250\) Дж.
Это означает, что если меняется температура серебра массой \(1\) кг на \(1\) °С, то оно или поглощает, или выделяет количество теплоты, равное \(250\) Дж.
Таблица 1. Удельная теплоёмкость некоторых веществ.
Твёрдые вещества
Вещество | \(c\), Дж/(кг·°С) |
Алюминий | \(920\) |
Бетон | \(880\) |
Дерево | \(2700\) |
Железо, сталь | \(460\) |
Золото | \(130\) |
Кирпич | \(750\) |
Латунь | \(380\) |
Лёд | \(2100\) |
Медь | \(380\) |
Нафталин | \(1300\) |
Олово | \(250\) |
Парафин | \(3200\) |
Песок | \(970\) |
Платина | \(130\) |
Свинец | \(120\) |
Серебро | \(250\) |
Стекло | \(840\) |
Цемент | \(800\) |
Цинк | \(400\) |
Чугун | \(550\) |
Сера | \(710\) |
Жидкости
Вещество | \(c\), Дж/(кг·°C) |
Вода | \(4200\) |
Глицерин | \(2400\) |
Железо | \(830\) |
Керосин | \(2140\) |
Масло подсолнечное | \(1700\) |
Масло трансформаторное | \(2000\) |
Ртуть | \(120\) |
Спирт этиловый | \(2400\) |
Эфир серный | \(2300\) |
Газы (при постоянном давлении и температуре \(20\) °С)
Вещество | \(c\), Дж/(кг·°C) |
Азот | \(1000\) |
Аммиак | \(2100\) |
Водород | \(14300\) |
Водяной пар | \(2200\) |
Воздух | \(1000\) |
Гелий | \(5200\) |
Кислород | \(920\) |
Углекислый газ | \(830\) |
Удельная теплоемкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоемкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоемкости газов от температуры необходимо учитывать, поскольку она очень существенна.
Обрати внимание!
Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Пример:
Вода в жидком состоянии имеет удельную теплоёмкость, равную \(4200\) Дж/(кг·°С), в твёрдом состоянии (лёд) — \(2100\) Дж/(кг·°С), в газообразном состоянии (водяной пар) — \(2200\) Дж/(кг·°С).
Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от \(0\) °С до \(37\) °С и снова растёт при дальнейшем нагревании.
В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно.
Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках) и др.
Именно благодаря высокой удельной теплоёмкости вода является одним из лучших средств для борьбы с огнём. Соприкасаясь с пламенем, она моментально превращается в пар, отнимая большое количество теплоты у горящего предмета.
Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.
Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.
Источники:
Пёрышкин А.В. Физика, 8 кл.: учебник. — М.: Дрофа, 2013. — 237 с.
www.infourok.ru
www.puzzleit.ru
www.libma.ru
www.englishhelponline.files.wordpress.com
www.avd16.ru
www.yaklass.ru
ЗАДАЧНИК ОНЛ@ЙН БИБЛИОТЕКА 1 БИБЛИОТЕКА 2 Удельная теплоёмкость - это физическая величина, которая равно количеству теплоты, которое необходимо передать телу массой 1 кг, чтобы его температура изменилась на 1 градус по Цельсию. Удельная теплоемкость обозначается буквой с и измеряется в Дж/кг*градус по Цельсию. | Удельная теплоемкость расплавленных металлов и сжиженных газов. Удельная теплоемкость металлов и сплавов. Удельная теплоемкость твердых веществ. Удельная теплоемкость газов и паров. Удельная теплоемкость жидкостей.Удельная теплоемкость расплавленных металлов и сжиженных газов
Удельная теплоемкость металлов и сплавов
Удельная темлоемкость твердых веществ
Удельная теплоемкость металлов и сплавов (при нормальном атмосферном давлении)
Удельная теплоемкость жидкостей (при нормальном атмосферном давлении)
... |
www.kilomol.ru
Теплоемкости удельные твердых веществ, жидкостей и газов (газов - при постоянном давлении 1 бар абс) + справочные плотности. Твердые вещества. Удельная теплоемкость при 20 °C (если не указано другое).
Жидкости. Удельная теплоемкость при 20 °C (если не указано другое).
Газы. Удельная теплоемкость при постоянном давлении 1 бар абс, при 20 °C (если не указано другое).
|
tehtab.ru
Чему равна удельная теплоемкость — Науколандия
Удельная теплоемкость является характеристикой вещества. То есть у разных веществ она различна. Кроме того, одно и то же вещество, но в разных агрегатных состояниях обладает разной удельной теплоемкостью. Таким образом, правильно говорить об удельной теплоемкости вещества (удельная теплоемкость воды, удельная теплоемкость золота, удельная теплоемкость древесины и т. д.).
Удельная теплоемкость конкретного вещества показывает, сколько тепла (Q) надо ему передать, чтобы нагреть 1 килограмм этого вещества на 1 градус Цельсия. Удельную теплоемкость обозначают латинской буквой c. То есть, c = Q/mt. Учитывая, что t и m равны единице (1 кг и 1 °C), то удельная теплоемкость численно равна количеству теплоты.
Однако теплота и удельная теплоемкость имеют разные единицы измерения. Теплота (Q) в системе Си измеряется в Джоулях (Дж). А удельная теплоемкость — в Джоулях, деленных на килограмм, умноженный на градус Цельсия: Дж/(кг · °C).
Если удельная теплоемкость какого-то вещества равна, например, 390 Дж/(кг · °C), то это значит, что если 1 кг этого вещества нагреется на 1 °C, то оно поглотит 390 Дж тепла. Или, другими словами, чтобы нагреть 1 кг этого вещества на 1 °C, ему надо передать 390 Дж тепла. Или, если 1 кг этого вещества охладится на 1 °C, то оно отдаст 390 Дж тепла.
Если же на 1 °C нагревается не 1, а 2 кг вещества, то ему надо передать в два раза больше тепла. Так для примера выше это уже будет 780 Дж. То же самое будет, если нагреть на 2 °C 1 кг вещества.
Удельная теплоемкость вещества не зависит от его начальной температуры. То есть если например, жидкая вода имеет удельную теплоемкость 4200 Дж/(кг · °C), то нагревание на 1 °C хоть двадцатиградусной, хоть девяностоградусной воды одинаково потребует 4200 Дж тепла на 1 кг.
А вот лед имеет удельную теплоемкость отличную от жидкой воды, почти в два раза меньше. Однако, чтобы и его нагреть на 1 °C потребуется одинаковое количество теплоты на 1 кг, независимо от его начальной температуры.
Удельная теплоемкость также не зависит от формы тела, которое изготовлено из данного вещества. Стальной брусок и стальной лист, имеющие одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. У листа поверхность больше, чем у бруска, а значит, лист больше отдает тепла, и поэтому быстрее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость — это характеристика вещества, но не тела.
Итак, удельная теплоемкость у разных веществ различна. Это значит, что если даны различные вещества одинаковой массы и с одинаковой температурой, то чтобы нагреть их до другой температуры, им надо передать разное количество тепла. Например, килограмму меди потребуется тепла примерно в 10 раз меньше, чем воде. То есть у меди удельная теплоемкость примерно в 10 раз меньше, чем у воды. Можно сказать, что в «медь помещается меньше тепла».
Количество теплоты, которое надо передать телу, чтобы нагреть его от одной температуры до другой, находят по следующей формуле:
Q = cm(tк – tн)
Здесь tк и tн — конечная и начальная температуры, m — масса вещества, c — его удельная теплоемкость. Удельную теплоемкость обычно берут из таблиц. Из этой формулы можно выразить удельную теплоемкость:
c = Q/(m(tк – tн))
scienceland.info
Удельная теплоемкость газов
Газ |
ср , Дж / (кг ·К) |
сv , Дж / (кг ·К) |
Азот |
1051 |
745 |
Аммиак |
2244 | 1675 |
Водород |
14269 | 10132 |
Воздух |
1009 | 720 |
Гелий |
5296 | 3182 |
Кислород |
913 | 653 |
Метан |
2483 | 1700 |
Пропан |
1863 | 1650 |
Хлор |
520 | 356 |
Этан |
1729 | 1444 |
Этилен |
1528 | 1222 |
Удельная теплоемкость жидкостей.
Жидкость | Температура | с, Дж / (кг ·К) |
Азотная кислота (100%) |
20 | 1720 |
Ацетон |
20 | 2160 |
Бензин |
50 | 2090 |
Вода |
20 | 4182 |
Вода морская |
17 | 3936 |
Вода тяжелая |
20 | 4208 |
Глицерин |
20 | 2430 |
Керосин |
20-100 | 2085 |
Масло подсолнечное рафинированное |
20 | 1775 |
Масло трансформаторное |
0-100 | 1880 |
Мед |
20 | 2428 |
Молоко сгущенное с сахаром |
15 | 2261 |
Молоко цельное |
20 | 3936 |
Нафталин расплавленный |
80-90 | 1683 |
Ртуть |
20 | 139 |
Серная кислота (100%) |
20 | 1380 |
Фреон-12 |
20 | 2010 |
Удельная теплоемкость
некоторых химических элементов.
Элемент | Температура | с, Дж / (кг ·К) |
Алюминий |
20 | 896 |
Бериллий |
20 | 1750 |
Висмут |
20 | 123 |
Вольфрам |
20 | 134 |
Железо |
20 | 452 |
Золото |
20 | 129 |
Кремний |
0 | 678 |
Медь |
20 | 383 |
Натрий |
0 | 1189 |
Никель |
0 | 442 |
Олово |
0 | 225 |
Платина |
0 | 133 |
Свинец |
0 | 128 |
Сера |
0 | 699 |
Серебро |
0 | 233 |
Тантал |
0 | 137 |
Уран |
25 | 134 |
Хром |
0 | 427 |
Цезий |
20 | 230 |
Цинк |
20 | 385 |
Цирконий |
20 | 289 |
Удельная теплоемкость
некоторых твердых веществ
при температуре 200С.
Вещество | с, Дж / (кг ·К) | Вещество | с, Дж / (кг ·К) |
Асфальт |
920 |
Мел |
880 |
Бетон |
880 |
Парафин |
2890 |
Бумага |
1510 |
Песок (20-1000С) |
790 |
Воск |
2930 |
Пробка |
2050 |
Глина |
840-1050 |
Резина |
2090 |
Гранит |
800 |
Сталь (20-2000С) |
460 |
Дерево |
2390-2720 |
Стекло оконное |
670 |
Железобетон |
800 |
Торф |
1880 |
Камень |
800 |
Уголь древесный |
960 |
Кирпич красный |
880 |
Уголь каменный |
1000 |
Кирпич силикатный |
840 |
Лед (-40-00С) |
2090 |
Латунь |
390-410 |
Фосфор (20-4000С) |
840-1050 |
Лед (-200С) |
1580 |
Шифер |
750 |
Лед (-100С) |
2200 |
Чугун |
540 |
Лед (00С) |
2122 |
Эбонит |
1380 |
nika-fizika.narod.ru
для чего она нужна и в чем ее смысл? :: SYL.ru
Физика и тепловые явления - это довольно обширный раздел, который основательно изучается в школьном курсе. Не последнее место в этой теории отводится удельным величинам. Первая из них — удельная теплоемкость.
Однако толкованию слова «удельный» обычно уделяется недостаточно внимания. Учащиеся просто запоминают его как данность. А что оно значит?
Если заглянуть в словарь Ожегова, то можно прочесть, что такая величина определяется как отношение. Причем оно может быть выполнено к массе, объему или энергии. Все эти величины обязательно полагается брать равными единице. Отношение к чему задается в удельной теплоемкости?
К произведению массы и температуры. Причем их значения обязательно должны быть равными единице. То есть в делителе будет стоять число 1, но его размерность будет сочетать килограмм и градус Цельсия. Это обязательно учитывается при формулировке определения удельной теплоемкости, которое дано немного ниже. Там же находится формула, из которой видно, что в знаменателе стоят именно эти две величины.
Что это такое?
Удельная теплоемкость вещества вводится в тот момент, когда рассматривается ситуация с его нагреванием. Без него невозможно узнать, какое количество теплоты (или энергии) потребуется затратить на этот процесс. А также вычислить ее значение при охлаждении тела. Кстати, эти два количества теплоты равны друг другу по модулю. Но имеют разные знаки. Так, в первом случае она положительная, потому что энергию нужно затратить и она передается телу. Вторая ситуация с охлаждением дает отрицательное число, потому что тепло выделяется, и внутренняя энергия тела уменьшается.
Обозначается эта физическая величина латинской буквой c. Определяется она как некоторое количество теплоты, необходимое для нагревания одного килограмма вещества на один градус. В курсе школьной физики в качестве этого градуса выступает тот, что берется по шкале Цельсия.
Как ее сосчитать?
Если требуется узнать, чему равна удельная теплоемкость, формула выглядит так:
с = Q / (m * (t2 – t1)), где Q — количество теплоты, m — масса вещества, t2 – температура, которую тело приобрело в результате теплообмена, t1 — начальная температура вещества. Это формула № 1.
Исходя из этой формулы, единица измерения этой величины в международной системе единиц (СИ) оказывается Дж/(кг*ºС).
Как найти другие величины из этого равенства?
Во-первых, количество теплоты. Формула будет выглядеть таким образом: Q = с * m * (t2 – t1). Только в нее необходимо подставлять величины в единицах, входящих в СИ. То есть масса в килограммах, температура — в градусах Цельсия. Это формула № 2.
Во-вторых, массу вещества, которое остывает или нагревается. Формула для нее будет такой: m = Q / (c * (t2 – t1)). Это формула под № 3.
В-третьих, изменение температуры Δt = t2 – t1 = (Q / c * m). Знак «Δ» читается как «дельта» и обозначает изменение величины, в данном случае температуры. Формула № 4.
В-четвертых, начальную и конечную температуры вещества. Формулы, справедливые для нагревания вещества, выглядят таким образом: t1 = t2 - (Q / c * m), t2 = t1 + (Q / c * m). Эти формулы имеют № 5 и 6. Если в задаче идет речь об охлаждении вещества, то формулы такие: t1 = t2 + (Q / c * m), t2 = t1 - (Q / c * m). Эти формулы имеют № 7 и 8.
Какие значения она может иметь?
Экспериментальным путем установлено, какие она имеет значения у каждого конкретного вещества. Поэтому создана специальная таблица удельной теплоемкости. Чаще всего в ней даны данные, которые справедливы при нормальных условиях.
Вещество | Удельная теплоемкость, Дж/(кг * ºС) |
алюминий | 920 |
вода | 4200 |
графит | 750 |
железо | 460 |
золото | 130 |
латунь | 400 |
лед | 2100 |
медь | 400 |
олово | 230 |
свинец | 140 |
сталь | 500 |
стекло лабораторное | 840 |
чугун | 540 |
В чем заключается лабораторная работа по измерению удельной теплоемкости?
В школьном курсе физики ее определяют для твердого тела. Причем его теплоемкость высчитывается благодаря сравнению с той, которая известна. Проще всего это реализуется с водой.
В процессе выполнения работы требуется измерить начальные температуры воды и нагретого твердого тела. Потом опустить его в жидкость и дождаться теплового равновесия. Весь эксперимент проводится в калориметре, поэтому потерями энергии можно пренебречь.
Потом требуется записать формулу количества теплоты, которое получает вода при нагревании от твердого тела. Второе выражение описывает энергию, которую отдает тело при остывании. Эти два значения равны. Путем математических вычислений остается определить удельную теплоемкость вещества, из которого состоит твердое тело.
Чаще всего ее предлагается сравнить с табличными значениями, чтобы попытаться угадать, из какого вещества сделано изучаемое тело.
Задача № 1
Условие. Температура металла изменяется от 20 до 24 градусов Цельсия. При этом его внутренняя энергия увеличилась на 152 Дж. Чему равна удельная теплоемкость металла, если его масса равна 100 граммам?
Решение. Для нахождения ответа потребуется воспользоваться формулой, записанной под номером 1. Все величины, необходимые для расчетов, есть. Только сначала необходимо перевести массу в килограммы, иначе ответ получится неправильный. Потому что все величины должны быть такими, которые приняты в СИ.
В одном килограмме 1000 граммов. Значит, 100 граммов нужно разделить на 1000, получится 0,1 килограмма.
Подстановка всех величин дает такое выражение: с = 152 / (0,1 * (24 – 20)). Вычисления не представляют особой трудности. Результатом всех действий является число 380.
Ответ: с = 380 Дж/(кг * ºС).
Задача № 2
Условие. Определить конечную температуру, до которой остынет вода объемом 5 литров, если она была взята при 100 ºС и выделила в окружающую среду 1680 кДж тепла.
Решение. Начать стоит с того, что энергия дана в несистемной единице. Килоджоули нужно перевести в джоули: 1680 кДж = 1680000 Дж.
Для поиска ответа необходимо воспользоваться формулой под номером 8. Однако в ней фигурирует масса, а в задаче она неизвестна. Зато дан объем жидкости. Значит, можно воспользоваться формулой, известной как m = ρ * V. Плотность воды равна 1000 кг/ м3. Но здесь объем потребуется подставлять в кубических метрах. Чтобы перевести их из литров, необходимо разделить на 1000. Таким образом, объем воды равен 0,005 м3.
Подстановка значений в формулу массы дает такое выражение: 1000 * 0,005 = 5 кг. Удельную теплоемкость потребуется посмотреть в таблице. Теперь можно переходить к формуле 8: t2 = 100 + (1680000 / 4200 * 5).
Первым действием полагается выполнить умножение: 4200 * 5. Результат равен 21000. Второе — деление. 1680000 : 21000 = 80. Последнее — вычитание: 100 - 80 = 20.
Ответ. t2 = 20 ºС.
Задача № 3
Условие. Имеется химический стакан массой 100 г. В него налито 50 г воды. Начальная температура воды со стаканом равна 0 градусам Цельсия. Какое количество теплоты потребуется для того, чтобы довести воду до кипения?
Решение. Начать стоит с того, чтобы ввести подходящее обозначение. Пусть данные, относящиеся к стакану, будут иметь индекс 1, а к воде — индекс 2. В таблице необходимо найти удельные теплоемкости. Химический стакан сделан из лабораторного стекла, поэтому его значение с1 = 840 Дж/ (кг * ºС). Данные для воды такие: с2 = 4200 Дж/ (кг * ºС).
Их массы даны в граммах. Требуется перевести их в килограммы. Массы этих веществ будут обозначены так: m1 = 0,1 кг, m2 = 0,05 кг.
Начальная температура дана: t1 = 0 ºС. О конечной известно, что она соответствует той, при которой вода кипит. Это t2 = 100 ºС.
Поскольку стакан нагревается вместе с водой, то искомое количество теплоты будет складываться из двух. Первой, которая требуется для нагревания стекла (Q1), и второй, идущей на нагревание воды (Q2). Для их выражения потребуется вторая формула. Ее необходимо записать два раза с разными индексами, а потом составить их сумму.
Получается, что Q = с1 * m1 * (t2 – t1) + с2 * m2 * (t2 – t1). Общий множитель (t2 – t1) можно вынести за скобку, чтобы было удобнее считать. Тогда формула, которая потребуется для расчета количества теплоты, примет такой вид: Q = (с1 * m1 + с2 * m2) * (t2 – t1). Теперь можно подставить известные в задаче величины и сосчитать результат.
Q = (840 * 0,1 + 4200 * 0,05) * (100 – 0) = (84 + 210) * 100 = 294 * 100 = 29400 (Дж).
Ответ. Q = 29400 Дж = 29,4 кДж.
www.syl.ru