способ получения сложных эфиров карбоновых кислот. Эфиры карбоновых кислот
Сложные эфиры карбоновых кислот, их производные.
Сложные эфиры предельных и непредельных одноосновных карбоновых кислот. Основные способы получения сложных эфиров, их использование, строение, номенклатура.
Физико-химические и пожароопасные свойства сложных эфиров; причины их повышенной пожарной опасности (по сравнению с изомерными карбоновыми кислотами).
Жиры и масла; гидрогенизация и окисление жиров. Пожарная опасность жиров и масел, их склонность к самовозгоранию.
Перекиси и гидроперекиси.
Сложные эфиры карбоновых кислот. Жиры
Ранее уже было указано, что сложные эфиры являются производными спиртов и кислот. Их можно рассматривать либо как продукт замещения гидроксильного водорода в спирте на радикал кислоты (ацил) R-C=O, либо как продукт замещения гидроксила в карбоксильной группе кислоты на остаток спирта – OR’:
II + II
O к-та спирт O сложный эфир
Номенклатура
Названия сложных эфиров обычно производят от наименований образующих их спирта и кислоты. Часто употребляют также названия, которые выводят из наименования углеводородного радикала спирта и корня латинского наименования кислоты (или, что тоже, корня названия радикала этой кислоты) с добавлением к последнему окончания – ат.
Например: Н—С—О—СН3 СН3—С—О—С2Н5 О=С—О—С2Н5
II II I
O O O=C—OH метиловый эфир му- этиловый эфир укс. неполный этиловый
равьиной к-ты; муравь- к-ты; уксусноэти- эфир щавелевой к-ты;
инометиловый эфир; ловый эфир; этил- моноэтилоксалат.
метилформиат. ацетат.
Физические свойства
Сложные эфиры могут быть как жидкими, так и твердыми веществами в зависимости от молекулярного веса образующих их кислоты и спирта. Сложные эфиры низших и средних гомологов – летучие жидкости с характерным, часто приятным запахом. Многие из них являются носителями запаха различных плодов, овощей и фруктов. Сложные эфиры труднее растворимы в воде, чем образующие их спирты и кислоты. Так, этиловый спирт и уксусная кислота смешиваются с водой во всех отношениях, тогда как уксусноэтиловый эфир трудно растворим в воде. В органических растворителях сложные эфиры растворяются хорошо.
Химические свойства
Гидролиз (омыление) сложных эфиров
Под действием воды, особенно в кислой или щелочной среде, сложные эфиры разлагаются (гидролизуются) с образованием кислоты и спирта:
O O
II II
Ch4—C—O—C2H5 + HOH Ch4—C—OH + C2H5OH
уксусноэтиловый эфир уксусная к-та этиловый спирт
Этим сложные эфиры отличаются от простых эфиров, которые, как уже известно, гидролизу не подвергаются. Однако гидролиз сложных эфиров идет медленно и гораздо менее энергично, чем гидролиз ангидридов.
Минеральные кислоты значительно увеличивают скорость гидролиза сложных эфиров: образуемые ими ионы водорода являются в этой реакции катализаторами. Еще быстрее сложные эфиры гидролизуютя под влиянием щелочей благодаря каталитическому действию гидроксильных ионов; кроме того, щелочи нейтрализуют образующуюся из эфира кислоту и тем самым способствуют течению реакции. Продуктами щелочного гидролиза сложных эфиров является спирт и соль кислоты:
O O
II II
R—C—O—R’ + NaOH R—C—ONa + R’—OH
сложный эфир соль к-ты спирт
Щелочной гидролиз сложных эфиров называют омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.
Способы получения сложных эфиров
Реакция этерификации
Сложные эфиры могут быть получены при непосредственном взаимодействии кислоты и спирта, например:
Ch4—C—OH + HO—Ch3—Ch4 Ch4—C—O—Ch3—Ch4 + h3O
II укс. к-та II этиловый эфир
О О уксусной кислоты
Как уже было указано, такую реакцию называют реакцией этерификации. Для органических кислот она протекает очень медленно, причем, скорость образования эфира зависит от строения исходных кислот и спирта. Скорость этерификации увеличивается при нагревании и, особенно, в присутствии минеральных кислот благодаря каталитическому действию ионов водорода. Особенно в качестве катализатора применяют серную кислоту (В.В. Марковников, 1873г.)
Реакция этерификации обратима. Это объясняется тем, что получаемый сложный эфир гидролизуется одновременно образующейся при реакции водой, и поэтому процесс идет в обратном направлении с разложением эфира на кислоту и спирт. При этом, чем больше накапливается воды, тем больше скорость обратной реакции, последняя ускоряется и при нагревании, а также под влиянием ионов водорода, вводимых для ускорения прямой реакции. Таким образом, реакция этерификации не доходит до конца, а лишь достигает состояния химического равновесия, применение же катализаторов и повышение температуры только ускоряет достижения равновесия. Соотношение всех реагирующих веществ в момент равновесия зависит от строения кислоты и спирта, а также от склонности сложного эфира к гидролизу.
Чтобы увеличить количество образующегося эфира, т.е. сместить равновесие реакции этерификации вправо одно из реагирующих веществ (то, которое доступнее) берут в избытке (в соответствии с законом действия масс). При избытке спирта в реакцию может вступить практически вся кислота, при избытке кислоты – весь спирт.
Другой способ увеличения выхода сложного эфира заключается в постоянном выведении из реакции одного из образующихся веществ – эфира или воды. Так, применяемая при этерификации в качестве катализатора серная кислота, кроме того, является веществом, связывающим воду, и таким образом способствует смещению равновесия вправо.
studfiles.net
Эфиры карбоновых кислот пиролиз - Справочник химика 21
К другому типу элиминирования относится пиролиз эфиров карбоновых кислот и родственных производных спиртов [11]. Эти реакции представляют собой сын-элиминирование (см., например, уравнение 2) благодаря чему в некоторых случаях может быть достигнута определенная степень структурного контроля за счет выбора подходящей стереохимии исходного вещества (см., например, уравнение 3). В более сложных случаях наблюдаются перегруппировки, Которые могут быть сведены к минимуму при использовании ксантогенатов (дитиокарбонатов), элиминирование из [c.177]
Эфиры карбоновых кислот служат исходными веществами для важных реакций, как-то аминолиз, сложноэфирная конденсация (см. разд. Г, 7.26), реакции Гриньяра (см. разд. Г, 7.3.6), восстановление до спиртов [см. схему (Г. 7.94) и разд. (Г, 7.3.4), пиролиз (см. табл. 56)]. [c.83]
Карбоновые кислоты можно превратить в симметричные кетоны пиролизом в присутствии оксида тория. Альтернативный метод включает нагревание соли железа (II) карбоновой кислоты [1364]. При нагревании в присутствии оксида тория смеси муравьиной и другой карбоновой кислот получаются альдегиды. Смешанные алкиларилкетоны получены при нагревании соответствующих смесей солей железа (И) [1365]. Если группа R имеет большой стерический объем, вместо кислоты лучше использовать метиловый эфир, который ири нагревании с оксидом тория претерпевает декарбометокснлирование и образуется симметричный кетон. [c.238]
Предьщущие разделы этой главы посвящены реакциям элиминирования, протекающим по гетеролитическому, ионному механизму. Известно немало примеров реакций, для которых характерен совершенно иной механизм элиминирования. Так, например, сложные эфиры карбоновых кислот при нагревании до 400-600°С в отсутствие каких-либо реагентов подвергаются пиролизу в газовой фазе с образованием алкенов и карбоновых кислот [c.220]
Пиролиз сложных эфиров карбоновых кислот или ксантогенатов (протекает через циклическое переходное состояние) [c.204]
Эфиры карбоновых кислот являются важными исходными веществами для проведения следующих реакций аминолиз (см. стр. 395), сложноэфирная конденсация (стр. 451), реакция Гриньяра (стр. 487), восстановление до спиртов (стр. 421, 484), пиролиз сложных эфиров (стр. 225). Они играют важную роль и в химической промышленности. Некоторые важные эфиры указаны в табл. 89. [c.393]
Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, компоненты которой разделяются или идентифицируются лучше, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматографических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводородов, селективно поглощая их в реакторе с силикагелем, обработанным серной кислотой. При реакционной газовой хроматографии используются также реакции гидрирования, дегидрирования, этерификации (для анализа карбоновых кислот в вйде эфиров), пиролиза высокомолекулярных соединений. [c.123]
Аналогичный механизм предложен также для пиролиза сложных эфиров карбоновых кислот [c.137]
Причины того, почему в реакции Чугаева и при пиролизе сложных эфиров карбоновых кислот происходит цис-отщепление, неясны. Возможное объяснение заключается в том, что в этих случаях образование слабых водородных связей за счет цис-водородных атомов сопровождается выделением энергии, превышающей разность энергий отталкивания электронных пар при цис- и соответственно транс-отщеплении. [c.137]
Пиролиз дитиокарбонатов (84) (реакция Чугаева) и эфиров карбоновых кислот (86) отличается от приведенной выше реакции тем, что протекает через шестичленные циклические пере- [c.300]
Для таких реакций, как реакция Чугаева, пиролиз эфиров карбоновых кислот, и для других реакций, протекающих через циклическое переходное состояние, в котором не принимают участия ни ионы, ни радикалы, но скорее происходит перераспределение электронов, сопровождающееся образованием связей и их разрывом, Бартон 10] предложил термин молекулярный механизм . Он также установил соотнощение и предсказал конфигурации ряда терпенов и других бициклических соединений, основываясь на том, что при реакции Чугаева предпочтительно происходит с-элиминирование. [c.73]
Эфиры карбоновых кислот являются исходными веществами в следующих важных реакциях аминолизе, сложноэфирной конденсации (см. разд. Г,7.2.8), реакции Гриньяра (см. разд. Г,7.3.5), восстановлении до спиртов [см. схему (Г.7.79) и разд. Г,7.3.4], пиролизе (см. табл. 64). [c.90]
ТЫ [2 на схеме (5.33)], который, не выделяя, превращают реакцией с алкилгалогенидом в эфир (3, ксантогенат). Этот эфир, обычно также без очистки, термически расщепляют при 100—200 °С. Аналогичные реакции отщепления можно провести и с эфирами карбоновых кислот при температурах 300—500 °С. Наиболее изучен пиролиз ацетатов, который мы и обсудим в качестве примера. [c.276]
Метиловые эфиры карбоновых кислот количественно получали также путем пиролиза тетраметиламмониевых солей моно- и дикарбоновых кислот в нагретом (около 350 °С) входном устройстве газового хроматографа. Таким методом можно анализировать водные растворы кислоты, причем превращение кислот в соответствующие соли позволяет избежать потерь летучих жирных кислот во время анализа. Аналогичным образом можно анализировать и полиненасыщенные кислоты, если перед вводом в хроматограф сделать сильно щелочные растворы солей почти нейтральными (pH 7,5—8,0), добавляя в них уксусную кислоту [8]. Для анализа щавелевой, малоновой и оксикислот этот метод неприменим. [c.131]
Из более редких реакций г ис-элиминации назовем пиролиз сложных эфиров карбоновых кислот и пиролиз эфиров ксантогеновых кислот (реакция Л. А. Чугаева), [c.550]
Другой реакцией, родственной синтезу алкенов пиролизом эфиров карбоновых кислот, является термическое разложение ксантогенатов. Эта реакция была открыта в 1804 г. русским ученым Л.А. Чугаевым. Ксантогенаты образуются ири взаимодействии спиртов с сероуглеродом в присутствии гидроксида натрия с последующим алкилированием натриевой соли тиоугольной кислоты метилйодидом. При нагревании до 130-200 С метил-ксантогенаты разлагаются с образованием алкена, OS и H SH [c.223]
Обладает всеми хим. св-вами, характерными для карбоновых кислот. Соли и эфиры А. к. наз. азелаинатами. При пиролизе ее нерастворимых в воде солей (напр., Са, Мп) образуется циклооктанон. [c.44]
Методом дегидратации, весьма близким по своей природе к реакции Чугаева, является пиролиз эфиров карбоновых кислот, обычно ацетатов. Хотя такие эфиры претерпевают элиминирование через тот же тип циклического переходного состояния, что и ксантогенаты, однако они более устойчивы к пиролизу и требуют для своего расщепления температуры в пределах 300—600°. Они обладают, однако, значительными преимуществами, состоящими в том, что, вообще говоря, их много легче получать из спиртов, чем ксантогенаты, и что олефины будут в меньшей степени загрязнены другими продуктами разложения. Действительно, серьезным недостатком реакции Чугаева является то, что образующиеся олефины часто загрязнены серусодержащими примесями. Обычно от таких примесей освобождаются перегонкой над металлическим натрием, однако это сопровождается уменьшением выхода. [c.99]
Адсорбционные смолы полимер-дистиллята и легкого масла пиролиза представляли собой кислородные, преимущественно ненасыщенные соединения и продукты их уплотнения. В смолах полимер-дистиллята наряду со спиртами содержалось много карбоновых кислот и соединений с карбонильной группой. Значительная часть спиртов и кислот была связана в виде сложных эфиров. В адсорбционных смолах легкого масла пиролиза больше всего оказалось спиртов, совсем немного карбонильных соединений и не связанных в сложные эфиры кислот. Приблизительное представление охоставе кислородных соединений адсорбционных смол можно получить путем расчета на основе молекулярного веса и функциональных чисел. Условно принимая наличие лишь одной функциональной группы в молекуле соединения, получим следующий состав адсорбционных смол (в вес. %) [c.239]
Пиролиз эфиров карбоновых кислот. При нагревании алкиловых или циклоалкиловых эфиров карбоновых кислот до температуры около 500°С получают алкены (соответственно, циклоалкены) [c.224]
Пиролиз 5-метижсантогенатов по Чугаеву проводится при более низкой температуре, чем пиролиз эфиров карбоновых кислот, что сводит к минимуму возможность изомеризации образующегося алкена. Этот метод применяется для дегидратации вторичных спиртов алифатического и циклического рядов, например [c.224]
Карбоновые кислоты. Для проведения количественного анализа карбоновых кислот, особенно их бифункциональных производных, а также высококипящих кислот, их до хроматографического анализа превращают в более стабильные и менее адсорбционно-активные производные. Метиловые эфиры кислот — одна из наиболее популярных форм производных кислот в газохроматографическом анализе. Для получения метиловых эфиров карбоновых кислот используют диазометан [100], метанольный раствор соляной кислоты [Ш1], метанольный раствор трифторида бора [102], пиролиз тетраметилам-мониевых солей [ЮЗ] и другие методы. Применяют также высшие эфиры для повышения чувствительности при детектировании ЭЗД целесообразно использовать галогенсодержащие реагенты для получения сложных эфиров [104]. Следует особо отметить использование эфиров а-оксифосфоновой кислоты для анализа следов карбоновых кислот с применением селективного фосфорного детектора [49]. Триметилсилиловые эфиры также используются для проведения хроматографического анализа [106, 107]. Интересные методы анализа кетокислот [c.46]
Эфиры угольной и карбаминовой кислот [7] по своей устойчивости к пиролизу занимают промежуточное положение между ксантогенатами и эфирами карбоновых кислот, причем синтезировать их легче, чем ксантогенаты. Эфиры угольной кислоты обладают еще тем дополнительным преимуществом, что остальные продукты разложения — двуокись углерода и спирт (обычно этиловый) — нейтральны, не вступают в реакцию с образующимися олефинами и не имеют неприятного запаха. Однако эти эфиры пока не нащли широкого применения. [c.100]
Описано несколько других реакций в сочетании с ГЖХ для количественного определения сложных эфиров карбоновых кислот [14], солей диазония [15], первичных аминов [16] и амидов, мочевины и нитрилов [17]. Все реакции проводились в блоке пиролиза перед вводом в колонку и могут быть полезны при выяснении структуры красителя по фрагментам, особенно если недоступен масс-спектрометр или красители недостаточно летучи для масс-спектрометрии. С другой стороны, все реакции, описанные в разделе 3.2, можно использовать в сочетании с масс-спектромет-рией или ГЖХ — масс-спектрометрией. [c.146]
Ясно, что при термическом разложении наиболее слабым местом молекулы является связь кислород — алифатический углерод. Другие работы подтвердили этот вид разложения. Hyн недавно сообщил, что при пиролизе циклогекснлдифенилфосфа-та при 180°С образуются циклогексен с выходом 68% и дифе-нилфосфат с выходом 90%. Следует отметить, что так же разлагаются эфиры карбоновой кислоты с образованием олефинов и карбоновых кислот. [c.57]
Отсутствие изомеризации наблюдалось и при сходной реакции Чу-гаева на примере термического разложения метилового эфира-1-С -нропилксантогеповой кислоты [270], а также при пиролизе намеченных 5-алкильных эфиров ксантогеновых кислот и эфиров карбоновых кислот, например при реакциях [c.587]
Действие пятиокиси фосфора при 180—200° С на моноэтиловый эфир а-этил-малоновой кислоты дало соответствующий кетен с 23% выходом [103]. Эту реакцию правильнее рассматривать как пример пиролиза простой карбоновой кислоты. [c.714]
Дэвисон и Даттон [20] сконструировали микрореактор, представляющий собой и-образную трубу с одним заостроенным концом, укрепленную на паяльном пистолете. При использовании этого прибора анализируемые метиловые эфиры жирных кислот сначала реагируют с озоном, затем происходит пиролиз образующихся озонидов и продукты пиролиза поступают в газовый хроматограф. Карбоновые кислоты, образующиеся при пиролизе, удерживаются гранулированной окисью цинка. По мнению авторов работы [20], такой анализ дает количественные результаты, которые, однако, не соответствуют уравнению (1). [c.219]
Энергия активации при разложении ксантогенатов на 10 ккал1молъ меньше, чем для соответствующих сложных эфиров. Это дало бы при 200° С относительную скорость —5000. Электроноакцепторные группы, имеющиеся в ксантогенате, повышают скорость пиролиза существует хорошее соответствие между скоростью пиролиза и силой соответствующей карбоновой кислоты, а также со значением а Гаммета [78]. [c.142]
Другим примером реакции молекулярного типа служит пиролиз сложных эфиров ( R, 60, 431) продуктами реакции являются карбоновые кислоты и олефины, образующиеся из алкоксильной группы. Предполагают, что пиролиз таких эфиров протекает с промежуточным образованием шестичленного квазициклического соединения [c.591]
В литературе описано несколько примеров, когда заместителями были не алкильные и не арильные группы. При пиролизе S-метилксантогената (XXXV) этилового эфира транс-имк-логексанол-2-карбоновой кислоты был получен только этиловый эфир 1-циклогексенкарбоновой кислоты (XXXVI) с выходом 34% [46]. [c.87]
chem21.info
Сложные эфиры карбоновых кислот — КиберПедия
Сложными эфирами называют органические вещества, молекулы которых состоят из углеводородных радикалов (остатков спирта) и кислотных остатков, соединенных атомом кислорода. Сложные эфиры можно рассматри-вать как продукт взаимодействия спиртов и карбоновых кислот.
Этилацетат. Физические и химические свойства. Этилацетат — жидкость с приятным ароматным запахом, легко испаряется, плохо растворяется в воде. С воздухом этилацетат образует взрывчатые смеси. Концентрационные пределы воспламенения: НПВ — 3,55%, ВПВ —16,8% (вычисленные). Эфир способен к электризации. Этилацетат самовозгорается в контакте с хромовым ангидридом СгОз, с перекисью натрия Nа202 в присутствии воды, с перманганатом калия КМпО4, хлоратом калия КС103 в присутствии серной кислоты. На воздухе горит светящимся пламенем с выделением значительного количества тепла.
Важнейшим химическим свойством, сложных эфиров является разложение их водой на кислоту и спирт. Эта реакция сложного эфира с водой называется гидролизом или омылением. Если этилацетат нагревать с водой в присутствии минеральной кислоты или щелочи, то образуются уксусная кислота и этиловый спирт
О
II
Сн3— с— о-с2н5 + н2о —> сн3соон + С2Н5он
Получение и применение. Этилацетат получают при нагревании смеси этилового спирта с уксусной кислотой в присутствии концентрированной серной кислоты (реакция этерификации)
О
СН3—СООН + С2Н5ОН СН3—С—О-С2Н5 + Н2Онагревание
Эфиры уксусной кислоты хранят в стеклянных сосудах емкостью 15 — 20 кг, установленных в корзины с древесной стружкой, а также в бочках, цистернах.
Жиры (глицериды) представляют собой сложные эфиры трехатомного спирта (глицерина) и карбоновых кислот. Жиры бывают животного и растительного происхождения. Растительные жиры называются маслами. Большая часть глицеридов в природных жирах представляет собой эфиры; трипальмитинат (С15Н31СОО)3С3Н5—глицерид пальмитиновой кислоты, тристеарат (С17Н35СОО)3С3Н5 — глицерид стеариновой кислоты, триолеинат (С17НззСОО)зС3Н5 — глицерид олеиновой кислоты и т. д. Жиры имеют важное значение как пита-тельные вещества, кроме того, они имеют большое техническое значение.
Физические и химические свойства.Все жиры легче воды (их плотность 900 — 950 кг/м3) и нерастворимы в ней. Жиры растворяются во многих органических растворителях (бензине, эфире, сероуглероде, четыреххлористом углероде и др.). Все жиры являются горючими веществами. При горении их выделяется большое количество тепла: 1 г жира при горении дает 39060 кДж.
Масла и некоторые животные жиры склонны к самовозгоранию при определенных условиях. Для оценки способности масел к самовозгоранию необходимо знать количество ненасыщенных связей, что оценивают иоднымчислом.
При нагревании с водой жиры разлагаются на глицерин и соответствующие кислоты. Жидкие жиры (масла) на воздухе способны окисляться, превращаясь при этом в твердые вещества.
Нитросоединения
Нитросоединениями называют органические вещества,молекулы которых содержат одну или несколько групп —NO2, причем атом азота непосредственно связан с атомом углерода. Нитросоединения получают реакцией нитрования углеводородов.
Нитробензол. Физические и химические свойства.Нитробензол имеет структурную формулу
Он представляет собой желтоватую жидкость плотностью 1200 кг/м3, имеет запах горького миндаля, в воде не растворяется, хорошо растворяется в серной кислоте с выделением тепла, ядовит. Температура кипения нитробензола 210,9°С, температура плавления 5,7°С, температура вспышки 90°С, температура самовоспламенения 495°С.
Нитробензол не обладает взрывчатым свойством; при поджигании горит, выделяя большое количество тепла. При действии на него атомного водорода, например, выделяющегося в реакционной среде, нитробензол восстанавливается до анилина
N02
+ 6Н
Для проведения этой реакции нитробензол добавляют к соляной кислоте и вносят железные стружки. При взаимодействии железа с кислотой выделяется атомный водород, который и восстанавливает нитробензол.
Получение и применение. Нитробензол получают из бензола, действуя на него смесью азотной и серной кислот.
Реакция протекает с выделением значительного количества тепла, поэтому реакционный сосуд постоянно охлаждают. В промышленности реакцию нитрования проводят в специальных аппаратах — нитраторах.
В значительных количествах нитробензол применяют для получения анилина, который является исходным сырьем для производства красителей. Нитробензол применяют также для получения авиационных масел и взрывчатого вещества динитробензола.
Тринитротолуол.Физические и химические свойства.Тринитротолуол имеет структурную формулу
СН3О2N | NO2
|
NO2
Тринитротолуол (тротил, или тол) представляет собой твердое кристаллическое вещество желтого цвета, плотностью 1,66 г/см3, с температурой плавления 81 °С, температурой самовоспламенения 290—295°С. В холодной воде тринитротолуол не растворяется, хорошо растворяется в спирте, бензоле, толуоле, ацетоне и др. Тринитротолуол является сильным взрывчатым веществом.
При длительном нагревании тринитротолуол окисляется азотной кислотой; с металлами не взаимодействует, но со щелочами образует взрывчатые соединения, более реакционноспособные, чем сам тринитротолуол. Химическая стойкость его высокая, даже при длительном нагревании при температурах до 130°С. Заметное разложение происходит лишь при температурах выше 153°С.
При поджигании на воздухе тринитротолуол горит сильно коптящим пламенем, в определенных условиях горение тринитротолуола может перейти в детонацию (взрыв).
Получение и применение. Тринитротолуол получают нитрованием толуола С6Н5СН3. Эту реакцию проводят в три стадии, при которых в молекулу толуола вводят последовательно сначала первую, затем вторую и третью нитрогруппы.
Сочетание таких свойств, как большая стойкость, малая чувствительность к внешним воздействиям, отсутствие взаимодействия с металлами, нерастворимость в воде, достаточная мощность взрыва (т. е. образование большого количества газообразных веществ при разложении),сделало тринитротолуол основным бризантным взрывчатым веществом. Тротил широко применяют для наполнения артиллерийских снарядов, мин, торпед, авиабомб, ручных и противотанковых гранат. Температура взрыва тринитротолуола составляет 2800 °С. Для снаряжения боеприпасов тротил применяют как самостоятельно, так и в виде сплавов и смесей с другими взрывчатыми веществами. Наиболее широко в военное время применяют смеси аммонийной селитры с толом — аммотолы, содержащие от 10 до 60 % тола. Для строительных и горнорудных подрывных работ тротил применяют в виде шашек (толовые шашки).
Продуктами неполного нитрования толуола являются мононитротрлуол и динитротолуол. Мононитротолуол — жидкость красно-коричневого цвета, нерастворимая в воде, хорошо растворимая в горячих щелочах и большинстве органических растворителей, хорошо растворяет ди- и тринитротолуол.
Динитротолуол — твердое вещество желтоватого цвета с температурой плавления около 70 °С, плохо растворяется в воде и тяжелее ее, очень хорошо растворяется в мононитротолуоле и других органических растворителях. Его можно применять как составную часть различных взрывчатых веществ. Самостоятельно как взрывчатое вещество динитротолуол не используют.
cyberpedia.su
Сложные эфиры карбоновых кислот, их производные
.
Сложные эфиры предельных и непредельных одноосновных карбоновых кислот. Основные способы получения сложных эфиров, их использование, строение, номенклатура.
Физико-химические и пожароопасные свойства сложных эфиров; причины их повышенной пожарной опасности (по сравнению с изомерными карбоновыми кислотами).
Жиры и масла; гидрогенизация и окисление жиров. Пожарная опасность жиров и масел, их склонность к самовозгоранию.
Перекиси и гидроперекиси.
Сложные эфиры карбоновых кислот. Жиры
Ранее уже было указано, что сложные эфиры являются производными спиртов и кислот. Их можно рассматривать либо как продукт замещения гидроксильного водорода в спирте на радикал кислоты (ацил) R-C=O, либо как продукт замещения гидроксила в карбоксильной группе кислоты на остаток спирта – OR’:R-C-OH HO-R’ R-C-OR’
II + ¾® II
O к-та спирт O сложный эфир
Номенклатура
Названия сложных эфиров обычно производят от наименований образующих их спирта и кислоты. Часто употребляют также названия, которые выводят из наименования углеводородного радикала спирта и корня латинского наименования кислоты (или, что тоже, корня названия радикала этой кислоты) с добавлением к последнему окончания – ат.
Например: Н—С—О—СН3 СН3—С—О—С2Н5 О=С—О—С2Н5
II II I
O O O=C—OH метиловый эфир му- этиловый эфир укс. неполный этиловый
равьиной к-ты; муравь- к-ты; уксусноэти- эфир щавелевой к-ты;
инометиловый эфир; ловый эфир; этил- моноэтилоксалат.
метилформиат. ацетат.
Физические свойства
Сложные эфиры могут быть как жидкими, так и твердыми веществами в зависимости от молекулярного веса образующих их кислоты и спирта. Сложные эфиры низших и средних гомологов – летучие жидкости с характерным, часто приятным запахом. Многие из них являются носителями запаха различных плодов, овощей и фруктов. Сложные эфиры труднее растворимы в воде, чем образующие их спирты и кислоты. Так, этиловый спирт и уксусная кислота смешиваются с водой во всех отношениях, тогда как уксусноэтиловый эфир трудно растворим в воде. В органических растворителях сложные эфиры растворяются хорошо.
Химические свойства
Гидролиз (омыление) сложных эфиров
Под действием воды, особенно в кислой или щелочной среде, сложные эфиры разлагаются (гидролизуются) с образованием кислоты и спирта:
O O
II II
Ch4—C—O—C2H5 + HOH ® Ch4—C—OH + C2H5OH
уксусноэтиловый эфир уксусная к-та этиловый спирт
Этим сложные эфиры отличаются от простых эфиров, которые, как уже известно, гидролизу не подвергаются. Однако гидролиз сложных эфиров идет медленно и гораздо менее энергично, чем гидролиз ангидридов.
Минеральные кислоты значительно увеличивают скорость гидролиза сложных эфиров: образуемые ими ионы водорода являются в этой реакции катализаторами. Еще быстрее сложные эфиры гидролизуютя под влиянием щелочей благодаря каталитическому действию гидроксильных ионов; кроме того, щелочи нейтрализуют образующуюся из эфира кислоту и тем самым способствуют течению реакции. Продуктами щелочного гидролиза сложных эфиров является спирт и соль кислоты:O O
II II
R—C—O—R’ + NaOH ¾® R—C—ONa + R’—OH
сложный эфир соль к-ты спирт
Щелочной гидролиз сложных эфиров называют омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.
Способы получения сложных эфиров
Реакция этерификации
Сложные эфиры могут быть получены при непосредственном взаимодействии кислоты и спирта, например:
Ch4—C—OH + HO—Ch3—Ch4 <=> Ch4—C—O—Ch3—Ch4 + h3O
II укс. к-та II этиловый эфир
О О уксусной кислоты
Как уже было указано, такую реакцию называют реакцией этерификации. Для органических кислот она протекает очень медленно, причем, скорость образования эфира зависит от строения исходных кислот и спирта. Скорость этерификации увеличивается при нагревании и, особенно, в присутствии минеральных кислот благодаря каталитическому действию ионов водорода. Особенно в качестве катализатора применяют серную кислоту (В.В. Марковников, 1873г.)
Реакция этерификации обратима. Это объясняется тем, что получаемый сложный эфир гидролизуется одновременно образующейся при реакции водой, и поэтому процесс идет в обратном направлении с разложением эфира на кислоту и спирт. При этом, чем больше накапливается воды, тем больше скорость обратной реакции, последняя ускоряется и при нагревании, а также под влиянием ионов водорода, вводимых для ускорения прямой реакции. Таким образом, реакция этерификации не доходит до конца, а лишь достигает состояния химического равновесия, применение же катализаторов и повышение температуры только ускоряет достижения равновесия. Соотношение всех реагирующих веществ в момент равновесия зависит от строения кислоты и спирта, а также от склонности сложного эфира к гидролизу.
Чтобы увеличить количество образующегося эфира, т.е. сместить равновесие реакции этерификации вправо одно из реагирующих веществ (то, которое доступнее) берут в избытке (в соответствии с законом действия масс). При избытке спирта в реакцию может вступить практически вся кислота, при избытке кислоты – весь спирт.
Другой способ увеличения выхода сложного эфира заключается в постоянном выведении из реакции одного из образующихся веществ – эфира или воды. Так, применяемая при этерификации в качестве катализатора серная кислота, кроме того, является веществом, связывающим воду, и таким образом способствует смещению равновесия вправо.
Получение из солей кислот
Сложные эфиры могут быть получены из солей кислот при действии на них галогенпроизводных. Например: (из ацетата серебра и хлористого этила)
O O
II II
СН3—С—ОAg + Cl—Ch3—Ch4 ¾® Ch4—C—O—Ch3—Ch4 + AgCl¯
этилацетат
Преимущество этого метода заключается в том, что реакция необратима и, таким образом, достигается хороший выход эфира. Однако применяемые исходные вещества дороже, чем свободные кислота и спирт, используемые в методе этерификации.
Получение из галогенангидридов кислот
Аналогичный предыдущему метод получения сложных эфиров заключается в действии спиртов или алкоголятов на галогенангидриды кислот. Например: O OСh4—Ch3—ONa + Cl—C—Ch4 ¾® Ch4—Ch3—O—C—Ch4 + NaCl
этилат натрия хлорангидрид этилацетат
укс. кислоты;
хлористый ацетил.
Получение из ангидридов кислот
При действии спиртов на ангидриды кислот также достигаются хорошие выходы сложных эфиров:
O O O Сh4—C II II O + HO—Ch4 ® Ch4—C—O—Ch4 + Ch4—C—OH Ch4—C метиловый метилацетат уксусная к-таO спирт
укс. ангидрид - (ацетангидрид)
Отдельные представители сложных эфиров
Уксусноэтиловый эфир (этилацетат) Ch4COOC2H5.
Представляет собой бесцветную жидкость с характерным запахом. (Ткип. 77,2 оС, d420 =0,901). Довольно трудно растворим в воде. В технике широко используется как растворитель, особенно ВМС –пластмасс, входит в состав лаков и т.п. Применяется как исходное вещество в некоторых синтезах.
Уксусноизоамиловый эфир (изоамилацетат).
Его формула Ch4COOCh3Ch3CH(Ch4)2. Бесцветная жидкость с запахом груш (Ткип. 142 оС, d415=0,8762) почти не растворим в воде. Применяется в качестве растворителя подобно этилацетату, а также как пахучее вещество в пищевой промышленности и в парфюмерии.
Сложные эфиры фруктовых эссенций
Приятным запахом фруктов, цветов и т.п. обладают и другие, получаемые путем синтеза, сложные эфиры. Например:
Эфир формула запах
Муравьиноэтиловый Н-СО-О-С2Н5 рома
(этилформиат)
муравьиноамиловый Н-СО-О-С5Н11 вишен
(амилформиат)
муравьиноизоамиловый Н-СО-О-С5Н11 слив
(изоамилформиат)
масляноэтиловый С3Н7-СО-О-С2Н5 абрикосов
(этилбутират)
масляноизоамиловый С3Н7-СО-О-С5Н11 ананасов
(изоамилбутират)
изовалериановоизоамиловый С4Н9-СО-О-С5Н11 яблок
(изоамилизовалерат)
Многие из таких эфиров входят в состав искусственных фруктовых эссенций. Последние представляют собой часто очень сложные смеси различных как синтетических, так и натуральных веществ. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии. По одной из рецептур в состав абрикосовой эссенции входит 88, а яблочной – 20 различных компонентов. Рецептуры фруктовых эссенций для пищевых продуктов строго регламентируются государственными органами санитарного надзора. Пищевые эссенции должны быть совершенно безвредными.
Эфиры акриловой и метакриловой кислот
В промышленности пластических масс большое значение имеют эфиры непредельных кислот – акриловой и метакриловой. Обычно получают эфиры этих кислот с метиловым спиртом – метилакрилат и метилметакрилат:
ОСН3 О
II I II
Ch3=CH—C—O—Ch4 Ch3=C—C—O—Ch4
метилакрилат (Ткип. 80 оС) метилметакрилат (Т кип. 100,3 оС)
И тот, и другой - эфиры, легко полимеризуются с разрывом двойной связи и образуются соответственно полиметилакрилат и полиметилметакрилат, которые обычно называют полиакрилатами:
mirznanii.com
Производные карбоновых кислот. Сложные эфиры. Экологическое воспитание
На данном уроке будет рассмотрена тема «Производные карбоновых кислот. Сложные эфиры». Благодаря этой теме, вы сможете познакомиться с производными карбоновых кислот. Также вы изучите самые важные функциональные производные карбоновых кислот – сложные эфиры. Рассмотрите их состав, некоторые свойства, формирование названий и сферы их применения в жизни.
Тема: Карбонильные соединения. Карбоновые кислоты
Урок: Производные карбоновых кислот. Сложные эфиры
1. Ангидриды карбоновых кислот
Гидроксил карбоксильной группы способен при определенных условиях замещаться на другие атомы или группы атомов.
Ангидриды
В присутствии водоотнимающих средств, таких как оксид фосфора (V), гидроксил одной карбоновой кислоты замещается на остаток другой карбоновой кислоты:
2RCOOH (RCO)2O + Н2О
Ангидриды карбоновых кислот (RCO)2O – производные карбоновых кислот, представляющие собой продукт замещения гидроксила карбоксильной группы одной кислоты на остаток другой кислоты.
Малеиновый ангидрид:
Ангидриды карбоновых кислот более реакционноспособны, чем сами кислоты и сложные эфиры. Они легко вступают в реакции нуклеофильного замещения – например, гидролизуются:
(RCO)2О + h3O = 2RCOOH.
Галогенангидриды
При взаимодействии с галогенидами фосфора происходит замена гидроксила на атом галогена:
RCOOH + PCl5 = RCOCl + POCl3 + HCl
Галогенангидриды RCOНаl – производные карбоновых кислот, у которых гидроксил карбоксильной группы замещен на атом галогена.
Галогенангидриды еще реакционноспособнее ангидридов.
Амиды и нитрилы
Амиды можно получить аммонолизом хлорангидридов или ангидридов:
RCOCl + 2Nh4 = RCONh3 + Nh5Cl
или нагреванием аммониевых солей карбоновых кислот:
RCOONh5 RCONh3 + h3O.
Если нагревать амид дальше в присутствии Р2О5, то он превращается в нитрил:
RCONh3 RCN + h3O.
Нитрил можно также получить, замещая гидроксил или атом галогена на цианогруппу. Гидролизом нитрилов в кислой среде получают кислоты:
RCN + 2h3O + HCl = RCOOH + Nh5Cl
2. Сложные эфиры
В присутствии сильных неорганических кислот гидроксильная группа обратимо обменивается на остаток спирта:
RCOOH + R’OH RCOOR’ + h3O
Сложные эфиры RCOOR’ – производные карбоновых кислот, у которых гидроксил карбоксильной группы замещен на остаток спирта.
3. Номенклатура сложных эфиров
этилацетат | ||
углеводородный заместитель | + | кислотный остаток |
Названия по ИЮПАК выделены жирным шрифтом:
H–COO–C2H5 | Ch4–COO–Ch4–Ch4 | Ch3Ch3–COO–C2H5 |
Этилформиат, этилметаноат; этиловый эфир муравьиной кислоты | Метилацетат, метилэтаноат; метиловый эфир уксусной кислоты | Этилбутират, этилбутаноат; этиловый эфир бутановой кислоты |
4. Физические свойства, запахи эфиров
Запахи эфиров:
Рис. 1.
Сложные эфиры нерастворимы в воде, но хорошо смешиваются со многими органическими веществами. Именно поэтому они используются как растворители для лаков и красок. Рис. 1. Этилацетат и метил ацетат – основа растворителя – жидкости для снятия лака с ногтей.
Температуры кипения сложных эфиров меньше, чем температуры кипения кислот и спиртов с близкой молярной массой. Почему? Сложные эфиры, в отличие от кислот и спиртов, не способны образовывать водородные связи между молекулами. Табл. 1.
Табл. 1. Сравнение температуры кипения эфиров
5. Способность к гидролизу эфиров
Главное химическое свойство сложных эфиров – способность к гидролизу:
H–COO–C2H5 + h3O H–COOH + C2H5OH;
Ch4–COO–Ch4 + NaOH ® Ch4–COONa + Ch4OH.
Подведение итога урока
На данном уроке была рассмотрена тема «Производные карбоновых кислот. Сложные эфиры». Благодаря этой теме, вы смогли познакомиться с производными карбоновых кислот. Также вы изучили самые важные функциональные производные карбоновых кислот – сложные эфиры. Рассмотрели их состав, некоторые свойства, формирование названий и сферы их применения в жизни.
Список литературы
1. Рудзитис Г. Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф. Г. Фельдман. – 14-е издание. – М.: Просвещение, 2012.
2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В. В. Еремин, Н. Е. Кузьменко, В. В. Лунин и др. – М.: Дрофа, 2008. – 463 с.
3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В. В. Еремин, Н. Е. Кузьменко, В. В. Лунин и др. – М.: Дрофа, 2010. – 462 с.
4. Хомченко Г. П., Хомченко И. Г. Сборник задач по химии для поступающих в вузы. – 4-е изд. – М.: РИА «Новая волна»: Издатель Умеренков, 2012. – 278 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Interneturok. ru .
2. Органическая химия .
3. Химик .
Домашнее задание
1. №№ 4, 6 (с. 122) Рудзитис Г. Е., Фельдман Ф. Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф. Г. Фельдман. – 14-е издание. – М.: Просвещение, 2012.
2. Приведите примеры реакций получения сложных эфиров. Как называется такая реакция?
3. Где применяются сложные эфиры?
Закрепите материал с помощью тренажёров
- Тренажёр 1 Тренажёр 2 Тренажёр 3
dp-adilet.kz
Эфиры карбоновых кислот - Справочник химика 21
Превращение сложного эфира карбоновой кислоты в первичный спирт может быть достигнуто по Буво и Блану путем восстановления натрием и спиртом [c.110]
Метиловый эфир карбоновой кислоты (общая методика) [c.137]
Для придания смазочным маслам диспергирующих свойств к ним добавляют маслорастворимый эфир карбоновой кислоты, получаемый реакцией монокарбоновой кислоты с многоатомным [c.84]
Сложные эфиры карбоновых кислот. Жиры [c.489]
Сложные эфиры карбоновых кислот. Жиры. Продукты взаимодействия карбоновых кислот со спиртами или фенолами представляют собой сложные эфиры. Например [c.489]
Эфиры карбоновых кислот [c.124]
Синтезы риньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот 24 [c.3]
Низкий выход кислот на поглощенный кислород, очевидно, связан с их участием в процессе этерификации с образованием сложных эфиров карбоновых кислот. Имеет место соответствие между характером изменения оптической плот- [c.158]
Технология синтеза эфиров карбоновых кислот [c.209]
Жирные кислоты лучше всего восстанавливать в присутствии сеи ртов., являющихся (гар-одуктами этой же, реакции [93]. Кошчество спирта, прибавляемое заранее к жирной кислоте, должно, по меньшей мере, равняться теоретическому количеству, необходимому для образования нейтральных эфиров карбоновых кислот. [c.471]
Этернфикация является одним из основных методов синтеза сложных эфиров карбоновых кислот и предельных спиртов, широко используемых в качестве растворителей, пластификаторов, смазок и присадок, а также полупродуктов для различных синтезов. [c.236]
Оксид бора (борный ангидрид). Борный ангидрид относится к наиболее сильным осушителям, пригоден для обезвоживания углеводородов и их галогенпроизводных, простых эфиров, карбоновых кислот. Борный ангидрид можно получить, нагревая борную кислоту до 700—800°С. Перед использованием куски плава следует измельчать в ступке с целью увеличения поверхности. Для сушки воздуха рекомендуется использовать поглотитель, получаемый при нагревании борного ангидрида с 5—20% (масс.) серной кислоты. Поглотитель представляет собой твер- дое вещество и поглощает 80—1307о (масс.) воды. Чистый борный ангидрид покрывается пленкой кислоты и используется не полностью. [c.173]
Эфиры карбоновых кислот амфотерны и потому расщепляются кислотами и щелочами. Катализ щелочами заключается в индуцированной поляризации неполярной или слабо полярной связи. [c.550]
Простые эфиры с окисью углерода в указанных условиях образуют в присутствии воды сложные эфиры карбоновых кислот. Так, диметиловый эфир с окисью углерода и водой превращается в метилацетат [c.739]
Гидролиз эфиров карбоновых кислот, катализируемый кислотами и основаниями, обычно проходит через стадию кислотного расщепления [c.120]
В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия/толуол и краун-эфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно BU4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов. Как было показано раньше, при МФК возможна экстракция кислот в форме ионной пары R4N+X----HY [57]. Ранние работы, в которых рассматривалось кислотное МФК-омыление, оказались ошибочными [1202, 1348]. Однако недавно было описано мягкое и селективное расщепление трет-бутиловых эфиров, которое происходит при перемешивании с [c.250]
Очень хорошие результаты дает синтез кетонов, основанный на конденсации эфиров карбоновых кислот с реакционноспособными метиленовыми и метильными группами. Простейшим примером этой реакции является образование аце-тоуксусного эфира — эфира р-кетокарбоновой кислоты из двух молекул эфира уксусной кислоты. Конденсация происходит под действием алкоголята натрия (см. ацетоуксусный эфир, стр. 329) [c.219]
Первичные амиды кислот получаются при взаимодействии аммиака с хлорангидридами или эфирами карбоновых кислот [c.244]
Слэл ные эфиры карбоновых кислот имеют важное практическое згачение в качестве растворителей, гидравлических жидкостей, смазочных масел, пластификаторов и мономеров. [c.209]
Синтез бутандиола-1,4. Этот продукт имеет большую ценность для получения пластификаторов (эфиры карбоновых кислот Су— Сэ), пС Лиэфиров и тетрагидрофурапа. [c.453]
Среди серусодержащих ингибиторов в основном используют сульфонаты различных металлов и аминов, производные тиомочевины, алкил- или арилмеркаптаны. Из кислородсодержащих — производные спиртов, кето-иы, окиси, эфиры, карбоновые кислоты и их соли. [c.90]
В последнее время значительное применение получил новый некаталитический метод восстановления с помощью литийалюминий-гидрида ЫАШ . При нормальном давлении и в исключительно мягких условиях по Р. Нистрому и В. Брауну [84] восстанавливаются в спирты не только эфиры карбоновых кислот, но и сами карбоновые кислоты. Для таких реакций применяется аппаратура, аналогичная аппаратуре грнньяровских синтезов. В эфирный раствор Е1А1Н4 по каплям приливается эфирный раствор восстанавливаемого соединения. Реакцию удобно также вести в аппарате Сокслета. В этих условиях непредельные С=С-связи не гидрируются. Выходы предельных или непредельных спиртов составляют 90—95%. [c.404]
Беззольные присадки класса полярных полимеров представляют собой продукты сополимеризации двух мономеров, из которых один содержит полярную группу (азотистое основание) и служит носителем активных свойств присадки, а второй — олеофильный мономер обеспечивает растворимость присадки в углеводородах. Соотношением мономеров регулируют активность присадки [9, 18, 29, 37, 38]. Азотсодержащими мономерами служат эфиры аминоспиртов метакриловой и акриловой кислот, аминовиниловые эфиры карбоновых кислот, винилзамещенные органические соединения, а также метилвинилпиридины, амидизированный октадецен и [c.155]
Близок к методу молекулярных ионов анализ по иону [М— —СНз] + в триметилснлиловых эфирах карбоновых кислот или по двум ионам М+- и [М—СНз]+ в триметилснлиловых эфирах фенолов [181]. В производных кислот ион [М—СНз]+ заменяет отсутствующий молекулярный ион. В работе. [185] впервые определены коэффициенты относительной чувствительности при низких энергиях (8—20 эВ) для ряда алкилпиренов. Эти данные могут быть использованы в случае анализа многих других классов соединений. [c.134]
В присутствии реагента, связываюш его свободную серную кислоту [129], нагревание алкилсерных кислот со свободными карбоновыми кислотами ведет к получению эфиров карбоновых кислот [129]. В качестве таких реагентов пригодны сернокислый аммоний, а также ди- и триаммонййфосфат. [c.25]
Легче протекает гидрирование эфиров карбоновых кислот, например этилакрилат гидрируется над N1 при 180°. Примерно так же гидрируются эфиры высших непредельных жирных и жирно-ароматических (коричная) кислот. С N1 Ренея эфиры кислот гидрируются хорошо при 80°, с N1 на кизельгуре—при 125—160°. С. А. Фокин над Р1 впервые прогидрировал олеиновую кислоту в стеариновую, а затем непредельные двухосновные кислоты—мезаконовую, ита-коновую, цитраконовую, малеиновую, и фумаровую— в соответствующие предельные кислоты [41]. [c.356]
Аминофениловый эфир п-толуолсульфокислоты [279] и другие аминосульфонаты этого типа [280] не изомеризуются в анилиды, отличаясь в этом отношении от аминоароматических эфиров карбоновых кислот. Сульфонаты некоторых оксинитроальдегидов превращены в производные индиго обработкой ацетоном и щелочью [281]. [c.389]
Изучение реакции метил-, этил- и изопррпилаллило-вых эфиров с уксусной, монохлоруксусной, трихлоруксусной и бромуксусной кислотами в присутствии ВРз 0(С2Н5)2 показало, что и в данном случае органические кислоты не присоединяются но месту двойной связи аллиловых эфиров, а расщепляют их и дают в качестве основных продуктов алкиловые эфиры карбоновых кислот и аллиловый алкоголь [89]. [c.58]
Сложные эфиры карбоновых кислот п нолиэтиленгликолей. Как уже упоминалось, карбоксильные группы тоже легко реагируют с окисью этилена, причем получаются сложные эфиры этилеп- или нолиэтиленгликолей [c.416]
Возможными в условиях существования нефтяных месторождений могут быть процессы омыления сложных эфиров карбоновых кислот сульфидрильными солями [c.172]
В абсолютном спирте, т. е. без катализаторов. Эфиры всех кислот, кроме муравьиной, дают при этом хорошие выходы соответствуюш,их первичных спиртов. Впоследствии были разработаны удобные каталитические способы. В. Шраут с сотрудниками [78] нашли, что эфиры карбоновых кислот при 200 ат и 300—400 в присутствии смешанных окисных катализаторов (типа метанольных) из СиО и Сг.Рз, в зависимости от условий, могут давать высокие выходы соответствующих спиртов или углеводородов (в результате более глубоко идущего восстановления -СН,ОН до —СНз). [c.403]
Аналогично проводят и реакции переэтерификации тетраалк-оксисиланов со сложными эфирами карбоновых кислот по общей схеме [c.546]
До сих пор механизм гидролиза описывался таким образом, как если бы процесс протекал благодаря простым реакциям замещения. Однако, подобно тому как при гидролизе эфиров карбоновых кислот появляется тетраэдр>1ческий интермедиат (как уже указывалось), гидролиз фосфоэфиров проходит через пентакоор-динационный промежуточный продукт в хр -гибридном состоянии. Такой промежуточный продукт имеет геометрию, характерную для пяти электронных пар, расположенных вокруг центрального атома (фосфора), — геометрию тригональной бипирамиды. Дей- [c.122]
Более современный способ восстановления эфиров карбоновых кислот, разработанный Фингольтом, Бондом и Шлезингером, основан на применении алюмогидрида лития, получаемого, из гидрида лития и хлорида алюминия [c.111]
При действии LiAlh5 на эфир карбоновой кислоты, растворенный в каком-нибудь индифферентном, растворителе, обычно гладко протекает реакция восстановления до спирта при комнатной температуре по схеме [c.111]
Реакция Реформатского широко применяется для препаративных целей. Так же как а-галоидзамещенные эфиры карбоновых кислот, реагируют многие эфиры 3- и даже 7-бромкарбоновых кислот, если только [c.192]
Органическая химия (1974) -- [ c.628 , c.629 , c.651 ]Энциклопедия полимеров том 1 (1972) -- [ c.0 ]
Общий практикум по органической химии (1965) -- [ c.0 ]
Энциклопедия полимеров Том 1 (1974) -- [ c.0 ]
Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]
Капельный анализ (1951) -- [ c.395 ]
Органикум Часть2 (1992) -- [ c.2 , c.378 , c.379 ]
Комплексные гидриды в органической химии (1971) -- [ c.0 ]
Химия изотопов Издание 2 (1957) -- [ c.356 , c.358 , c.361 , c.399 ]
Теоретические основы органической химии (1973) -- [ c.0 ]
Курс физической органический химии (1972) -- [ c.396 , c.408 , c.426 ]
Определение строения органических соединений (2006) -- [ c.15 , c.16 , c.18 , c.19 , c.20 , c.38 , c.39 , c.46 , c.48 , c.49 , c.71 , c.144 , c.227 , c.298 , c.392 ]
chem21.info
способ получения сложных эфиров карбоновых кислот - патент РФ 2283299
Изобретение относится к усовершенствованному способу получения сложных эфиров карбоновых кислот, которые находят применение в лаковых смолах, в качестве составляющих лакокрасочных материалов, и особенно в качестве пластификаторов для пластмасс. Способ заключается во взаимодействии ди- или поликарбоновых кислот или их ангидридов со спиртами, причем реакционную воду удаляют азеотропной дистилляцией со спиртом, и жидкость, удаленную из реакции азеотропной дистилляцией, полностью снова заменяют спиртом. Улучшение периодического способа получения сложных эфиров позволяет повысить выход продукта при небольшом времени проведения процесса. 4 з.п. ф-лы.
Данное изобретение относится к периодическому способу получения сложных эфиров карбоновых кислот взаимодействием двух- или многоосновных карбоновых кислот или их ангидридов со спиртами.
Сложные эфиры многоосновных карбоновых кислот, например фталевой кислоты, адипиновой кислоты, себациновой кислоты, малеиновой кислоты, и спиртов находят широкое применение в лаковых смолах, в качестве составляющих лакокрасочных материалов и особенно в качестве пластификаторов для пластмасс.
Известно, что сложные эфиры карбоновых кислот получают взаимодействием карбоновых кислот со спиртами. Такие реакции проводят с использованием автокатализаторов или катализаторов, например кислот Бренстеда или Льюиса. Способ катализа выбирают любой, так как всегда существует зависящий от температурного режима баланс между используемыми веществами (карбоновой кислотой и спиртом) и продуктами (сложным эфиром и водой). Чтобы баланс был в пользу сложного эфира, во многих этерификациях используют разделяющий агент, с помощью которого реакционную воду удаляют из реакционной смеси. Если одно из используемых веществ (спирт или карбоновая кислота) кипит при более низкой температуре, чем образованный сложный эфир, и с водой образует концентрационный предел совместимости, то в качестве разделяющего агента возможно использование продуктов выделения, которые после отделения воды снова возвращают в исходную смесь. При этерификации двухосновных или многоосновных кислот используемый спирт, как правило, является разделяющим агентом. Полученный сложный эфир для использования во многих областях должен обладать низким кислотным числом, то есть превращение карбоновой кислоты должно проходить практически полностью. В противном случае снижается выход и кислоту необходимо отделять, например, нейтрализацией. Такой процесс является дорогостоящим и может привести к образованию побочных продуктов, которые необходимо отделять. Для получения возможно высокого превращения карбоновой кислоты этерификацию, как правило, проводят с избытком спирта. Однако при избытке спирта возникает такой недостаток, что при использовании низкокипящих спиртов реакционная температура при нормальном давлении является настолько низкой, что приводит к слишком низкой скорости реакции в техническом способе. Для устранения такого эффекта реакцию можно проводить под давлением, что приводит к высоким затратам на аппаратуру. Другой недостаток заключается в том, что с увеличением избытка спирта понижается максимально возможная концентрация конечного продукта в реакционном сосуде и уменьшается выход порций. Кроме того, необходимость отделения используемого в избытке спирта от сложного эфира обуславливает затраты времени и энергии. Реакции этерификации для пластифицированного сложного эфира диоктилфталата (ДОФ) и диизононилфталата (ДИНФ) с титанорганическим катализатором являются хорошо исследованными реакциями и описаны, например, в патенте Великобритании GB 2045767, в немецкой заявке на патент DE 19721347 или в патенте США US 5434294.
Данные способы включают следующие стадии:
- реакция одной молекулы ангидрида фталевой кислоты и одной молекулы спирта с получением моноэфира дикарбоновой кислоты (сложного эфира карбоновой кислоты), автокаталитическая;
- добавление титанового катализатора, например, н-бутилтитаната;
- реакция одной молекулы моноэфира дикарбоновой кислоты и одной молекулы спирта при отделении воды с получением дифталата;
- одновременное удаление реакционной воды отгонкой азеотропной смесью спирта/воды;
- разрушение катализатора добавлением основания;
- отгонка избыточного спирта;
- фильтрование остатков катализатора;
- дистилляционная очистка сложного диэфира фталевой кислоты, например, перегонкой с водяным паром.
Такие способы являются периодическими и не оптимальны относительно максимальной эффективности реакторов, то есть выхода пространство-время.
Задачей данного изобретения является улучшение периодического способа получения сложных эфиров для повышения выхода пространство-время (сокращенное время реакции, высокие выходы порций).
В настоящее время найдено, что выход пространство-время может быть повышен при проведении периодического способа этерификации, в соответствии с которым реакционную воду в качестве азеотропной смеси удаляют перегонкой с используемым в избытке спиртом и удаленный спирт полностью или частично снова заменяют, если уровень заполнения реактора сохраняют по возможности постоянным, и количество отделенной жидкости, то есть спирта и воды, полностью или частично снова заменяют спиртом.
Объектом данного изобретения является способ получения сложных эфиров карбоновых кислот взаимодействием ди- или поликарбоновых кислот или их ангидридов со спиртами, причем реакционную воду удаляют азеотропной дистилляцией со спиртом, причем количество жидкости, удаленное азеотропной дистилляцией из реактора, снова полностью или частично дополняют.
В качестве количества жидкости ниже указывают объем жидкости, удаленный азеотропной дистилляцией из реактора, в основном состоящий из реакционной воды и спирта.
Предпочтительной является полная замена удаленного количества воды. Такую замену проводят, например, подачей спирта в определенном месте реактора. По техническим причинам полная замена удаленного количества жидкости невозможна или затруднена. В таких случаях удаленное количество жидкости заменяют только частично, например только спирт, однако удаленную реакционную воду в любом случае заменяют не более 90 мас.%, предпочтительно 95-98 мас.%.
Также может быть необходимо возвращение в реактор большего количества жидкости, чем было удаленно, то есть кроме удаленного количества спирта заменяют реакционную воду и, кроме того, добавляют другой спирт. Согласно такому варианту осуществления данного изобретения 110-100 мас.%, предпочтительно 105-100 мас.% удаленного количества жидкости заменяют спиртом.
По сравнению с известными периодическими способами преимуществом данного способа является повышение скорости реакции. В результате может быть сокращено время цикла и получен более высокий выход пространство-время.
Для проведения данного способа являются подходящими все виды этерификации, при которых реакционную воду со спиртом удаляют дистилляцией.
В данном способе в качестве кислотных компонентов ди- или поликарбоновых кислот также возможно использование их ангидридов. В качестве многоосновных карбоновых кислот также возможно использование частично обезвоженных соединений. Также возможно использование смеси карбоновых кислот и ангидридов. Кислоты могут быть алифатическими, карбоциклическими, гетероциклическими, насыщенными или ненасыщенными, а также ароматическими. Алифатические карбоновые кислоты содержат, по меньшей мере, 4 атома углерода. Алифатическими карбоновыми кислотами или их ангидридами являются, например, малеиновая кислота, фумаровая кислота, ангидрид малеиновой кислоты, янтарная кислота, ангидрид янтарной кислоты, адипиновая кислота, пробковая кислота, триметиладипиновая кислота, азелаиновая кислота, декановая дикислота, додекановая дикислота, брассиловая кислота. Карбоциклическими соединениями являются, например, ангидрид гексагидрофталевой кислоты, гексагидрофталевая кислота, циклогексан-1,4-дикарбоновая кислота, циклогекс-4-ен-1,2-дикарбоновая кислота, ангидрид циклогексен-1,2-дикарбоновой кислоты, 4-метилциклогексан-1,2-дикарбоновая кислота, ангидрид 4-метилциклогексан-1,2-дикарбоновой кислоты, 4-метилциклогекс-4-ен-1,2-дикарбоновая кислота, ангидрид 4-метилциклогекс-4-ен-1,2-дикарбоновой кислоты. Ароматическими соединениями являются, например, фталевая кислота, изофталевая кислота, терефталевая кислота, тримеллитовая кислота, тримезиновая кислота, пиромеллитовая кислота, ангидрид пиромеллитовой кислоты или нафталиндикарбоновые кислоты.
В данном способе предпочтительно используют разветвленные или прямые алифатические спирты, содержащие 4-13 атомов углерода. Спирты являются одноатомными и могут быть вторичными или первичными.
Используемые спирты могут быть различного происхождения. Подходящими веществами могут являться, например, жирные спирты, спирты из альдольной конденсации или спирты или смеси спиртов, полученные гидрированием насыщенных или ненасыщенных альдегидов, особенно такие, синтез которых включает стадию гидроформилирования.
Спирты, используемые в данном способе, например, н-бутанол, изо-бутанол, н-октанол (1), н-октанол (2), 2-этилгексанол, нонанолы, дециловый спирт или тридеканолы, получают гидроформилированием или альдольной конденсацией и последующим гидрированием. Спирты могут быть использованы в виде чистого соединения, в виде смеси изомерных соединений или в виде смеси соединений с различным числом атомов углерода.
Предпочтительными используемыми спиртами являются смеси изомерных октанолов, нонанолов или тридеканолов, причем последние из соответствующих бутеновых олигомеров, особенно олигомеры прямых бутенов, могут быть получены гидроформилированием и последующим гидрированием. Получение бутеновых олигомеров в принципе можно проводить тремя способами. В результате катализируемой кислотой олигомеризации, в которой используют технические, например цеолиты или фосфорную кислоту на носителях, получают наиболее разветвленные олигомеры. При использовании прямых бутенов получают, например, фракцию с 8 атомами углерода, которая в основном состоит из диметилгексенов (см. международную заявку WO 92/13818). Также известной является олигомеризация с растворимыми комплексами никеля, известная как способ DIMERSOL (В.Cornils, W.А.Herrmann, Applied Homogenous Catalysis with Organometallic Compounds, Seite 261-263, Verlag Chemic 1996). Кроме того, известна олигомеризация на никелевых неподвижных катализаторах, например OCTOL-Process (Hydrocarbon Proess., Int. Ed. (1986) 65 (2. Sect.1), Seite 31-33).
Наиболее предпочтительными веществами для указанной этерификации являются смеси изомерных нонанолов или смеси изомерных тридеканолов, которые получают олигомеризацией прямых бутенов с получением олефинов с 8 атомами углерода и олефинов с 12 атомами углерода в соответствии с ОС-TOL-Process и последующим гидроформилированием и гидрированием.
Указанная этерификация может быть проведена с использованием автокатализатора или катализатора. В качестве катализаторов для этерификации возможно использование кислот Льюиса и Бренстеда или металлорганических веществ, которые не обязательно должны действовать в качестве кислоты. Предпочтительными катализаторами для этерификации являются алкоголяты, соли карбоновых кислот или желатиновые соединения титана или циркония, причем молекула катализатора может содержать один или несколько атомов металлов. Предпочтительно используют тетра(изопропил)орто-титанат и тетра(бутил)орто-титанат.
Этерификацию проводят в реакционном сосуде, в котором исходную реакционную смесь интенсивно перемешивают с помощью мешалки или циркуляционного насоса. Продукты выделения и катализатор могут быть одновременно или последовательно введены в реактор. Если загружаемое вещество является твердым при температуре заполнения, целесообразно получение жидкой формы компонента. Твердыми веществами могут являться порошки, грануляты, кристаллизаты или расплавы. Для сокращения времени цикла целесообразно в течение заполнения начать нагревание. Катализатор может быть введен в чистом виде или в виде раствора, предпочтительно растворенной в одном из загружаемых веществ, в начале или только после достижения реакционной температуры. Ангидриды карбоновых кислот часто уже автокаталитически реагируют со спиртами, то есть не катализируются в соответствующие сложные эфиры карбоновых кислот (моноэфиры дикарбоновых кислот), например, ангидрид фталевой кислоты в сложный моноэфир фталсвой кислоты. Поэтому обычно катализатор необходим лишь после первой стадии реакции.
Превращенный спирт, который является разделяющим агентом, может быть использован в стехиометрическом избытке, предпочтительно 5-50 мас.%, наиболее предпочтительно 10-30 мас.% от стехиометрически необходимого количества.
Концентрация катализатора зависит от типа катализатора, предпочтительно используют соединения титана в количестве 0,005-1,0 мас.%, предпочтительно 0,01-0,3 мас.%, относительно реакционной смеси.
При использовании титановых катализаторов реакционная температура составляет 160-270°С. Оптимальная температура зависит от загружаемых веществ, развития реакции и концентрации катализатора. Температуру можно легко определить исследованием для каждого отдельного случая. Высокие температуры повышают скорость реакции и благоприятные побочные реакции, например, отделение воды от спиртов или образование цветных побочных продуктов. Для удаления реакционной воды необходимо, чтобы спирт можно было отгонять из реакционной смеси. Предпочтительную температуру или предпочтительные области температур регулируют давлением в реакционном сосуде. Поэтому превращение низкокипящих спиртов проводят при избыточном давлении, а превращение высококипящих спиртов при пониженном давлении. Взаимодействие ангидрида фталевой кислоты со смесью изомерных нонанолов проводят, например, в области температур от 170 до 250°С и области давления от 1 бар до 10 мбар.
В соответствии с данным изобретением жидкость, возвращаемая в реактор, может полностью или частично состоять из спирта, который получают обработкой азеотропного дистиллята. Также возможно проведение обработки в более поздний момент и замещение удаленной жидкость полностью или частично свежим спиртом, то есть заранее подготовленным спиртом из сборника.
В соответствии с другим вариантом осуществления данного изобретения отделенную жидкость перерабатывают с получением спирта.
В течение реакции смесь спирта и воды в качестве азеотропной смеси отгоняют из реакционной смеси. Выпары выводят из реакционного сосуда через короткую колонку (встроенный элемент или насадка; 1-5, предпочтительно 1-3 теоретические тарелки) и конденсируют. Конденсат может быть отделен в водной или в спиртовой фазе, так что может возникнуть необходимость охлаждения. Водную фазу отделяют и, в случае необходимости, после обработки, удаляют или используют в качестве воды для отгонки при дополнительной обработке сложных эфиров.
Спиртовая фаза, образованная после отделения азеотропного дистиллята, полностью или частично может быть возвращена в реакционный сосуд. На практике оказывается подходящим регулируемый контроль за уровнем заполнения реактора для подачи спирта.
Возможно полное или частичное замещение жидкости, удаленной азеотропной дистилляцией, например, удаленную жидкость разделяют на спиртовую и водную фазу и спиртовую фазу возвращают в реакцию этерификации. Также возможно добавление свежего спирта к отделенной спиртовой фазе.
В реакции этерификации для подачи спирта используют различные возможности. Спирт может быть помещен в качестве флегмы на колонну. Также спирт, в случае необходимости, после нагревания, может быть перекачен в жидкую реакционную смесь. Отделение реакционной воды снижает реакционный объем в аппарате. В идеальном варианте в течение реакции дополнительно подают такое количество спирта, которое соответствует объему отделенного дистиллята (воды и, в случае необходимости, спирта), так что уровень заполнения в реакционном сосуде остается постоянным. В соответствии с предложенным способом за счет увеличения избытка спирта получают баланс в пользу полного эфира.
После окончания реакции реакционная смесь, которая в основном состоит из полного эфира (целевого продукта) и избыточного спирта, содержит, кроме катализатора и/или его следующих продуктов, небольшое количество сложного эфира карбоновой кислоты (кислот) и/или не превратившуюся карбоновую кислоту.
Для обработки такой сырой эфирной смеси избыточный спирт удаляют, кислые соединения нейтрализуют, катализатор разрушают и образованные при этом твердые побочные продукты отделяют. Причем большую часть спирта отгоняют при нормальном давлении или в вакууме. Удаление последних капель спирта возможно, например, перегонкой водяным паром, предпочтительно при температуре от 120 до 225°С. Отделение спирта может являться как первой, так и последней стадией обработки.
Нейтрализацию кислых веществ, например карбоновых кислот, сложных эфиров карбоновых кислот или, при необходимости, кислых катализаторов, проводят добавлением соединений щелочных и щелочноземельных металлов с действующими основаниями, которые используют в виде их карбонатов, гидрокарбонатов или гидроксидов. Агент нейтрализации может быть использован в твердой форме или предпочтительно в виде раствора, особенно в виде водного раствора. Часто используют гидроксид натрия в концентрации от 1 до 30 мас.%, предпочтительно от 20 до 30 мас.% Агент нейтрализации добавляют в количестве, которое соответствует от однократного до четырехкратного, предпочтительно от однократного до двукратного, стехиометрически необходимому количеству, определяемое титрованием. При использовании титановых катализаторов и агента нейтрализации получают твердые, способные к фильтрации вещества.
Нейтрализацию можно проводить сразу после окончания реакции этерификации или после отгонки основного количества избыточного спирта. Предпочтительно нейтрализацию гидроксидом натрия проводят сразу после реакции этерификации при температуре выше 150°С. Затем воду, введенную с щелочью, отгоняют вместе со спиртом.
Твердые вещества, содержащиеся в нейтрализованном сыром эфире, могут быть отделены с помощью центрифуги или предпочтительно фильтрацией.
Для улучшения фильтрующей способности и/или отделения цветных субстанций или других побочных продуктов также возможно добавление фильтровального вспомогательного вещества и/или поглотителя после этерификации в течение обработки.
Указанный способ можно проводить в одной емкости или нескольких последовательно соединенных сосудах. Таким образом, этарификацию и обработку можно проводить в различных сосудах. В случае использования ангидридов карбоновой кислоты реакции для получения моноэфира дикарбоновой кислоты и диэфира проводят в различных реакторах.
Полученные таким образом сложные эфиры многоосновных карбоновых кислот, например фталевой кислоты, адипиновой кислоты, себациновой кислоты, малеиновой кислоты и спиртов, широко применяют в лаковых смолах, в качестве составляющих лакокрасочных материалов и предпочтительно в качестве пластификаторов для пластмасс. Подходящими пластификаторами для ПВХ являются ди-изо-нонилфталаты и ди-октилфталаты. Применение для таких целей сложных эфиров, полученных в соответствии с данным изобретением, также является объектом изобретения. Спирт, отделенный при обработке, может быть использован, в случае необходимости, после частичного выведения для следующих составлений.
Следующие примеры более подробно объясняют данное изобретение, без ограничения притязаний, как определено в формуле изобретения.
Примеры
Реактор для этерификации состоит из сосуда с мешалкой и нагревательным змеевиком (40 бар давление пара), разделительной системы для отделения реакционной воды/спирта и сливной линии для избыточного спирта. Перед заполнением аппаратуру промывают азотом для удаления кислорода.
Этерификация ангидрида фталевой кислоты со смесью изомерных изо-нонанолов с получением ди-изо-нонилфталата (ДИНФ).
Пример 1 (сравнительный пример)
Используемое количество:
1000 кг ангидрида фталевой кислоты (жидкого)
2430 кг изо-нонанола
1 кг бутилтитаната
Сразу после помещения 400 кг изо-нонанола в реактор начинают нагревание. Одновременно добавляют ангидрид фталевой кислоты в жидкой форме и остаточный спирт (2030 кг). После нагревания реакционной смеси до температуры 120°С добавляют титановый катализатор. При температуре 170°С смесь начинает кипеть. К этому моменту максимальное наполнение реактора составляет 80%. В течение этерификации воду выделяют и отгоняют в виде азеотропной смеси изо-нонанола. Кислотное число реакционной смеси опускается от начального уровня 100 мг КОН/г в начале кипения до 10 мг КОН/г через 150 минут, 1 мг КОН через 290 минут и 0,5 мг КОН/г через 330 минут. К этому моменту уровень заполнения реактора составляет 76%.
Пример 2 (согласно изобретению)
Используемое количество:
1000 кг ангидрида фталевой кислоты (жидкого)
2430 кг изо-нонанола
110 кг изо-нонанола (дополнительное)
1 кг бутилтитаната
Сразу после помещения 400 кг изо-нонанола в реактор начинают нагревание. Одновременно добавляют ангидрид фталевой кислоты в жидкой форме и остаточный спирт (2030 кг). После нагревания реакционной смеси до температуры 120°С добавляют титановый катализатор. При температуре 170°С смесь начинает кипеть. К этому моменту максимальное наполнение реактора составляет 80%. В течение этерификации воду выделяют и отгоняют в виде азеотропной смеси изо-нонанола. Теперь уровень наполнения реактора составляет 78% (около 2 часов после кипения), затем после добавления свежего изо-нонанола (который не входит в основное количество) снова достигает 80%, и такой уровень заполнения сохраняют до конца реакции дополнительным добавлением изо-нонанола. При окончании реакции (КЧ=0,3) избыток изо-нонанола на 110 кг больше, чем в сравнительном примере 1. Кислотное число реакционной смеси опускается от начального уровня 100 мг КОН/г в начале кипения до 10 мг КОН/г через 150 минут, 1 мг КОН через 270 минут и 0,5 мг КОН/г через 300 минут.
В соответствии с предложенным способом время этерификации сокращается на 30 минут или на 9%. (Выход более 99,8%, относительно ангидрида фталевой кислоты).
Этерификация ангидрида фталевой кислоты с 2-этилгексанолом с получением бис(2-этилгептил)фталата (ДОФ)
Пример 3 (сравнительный пример)
Используемое количество:
1070 кг ангидрида фталевой кислоты (жидкого)
2350 кг 2-этилгексанола
1 кг бутилтитаната
Сразу после помещения 400 кг 2-этилгексанола в реактор начинают нагревание. Одновременно добавляют ангидрид фталевой кислоты в жидкой форме и остаточный спирт (1950 кг). После нагревания реакционной смеси до температуры 120°С добавляют титановый катализатор. При температуре 170°С смесь начинает кипеть. К этому моменту максимальное наполнение реактора составляет 80%. В течение этерификации воду выделяют и отгоняют в виде азеотропной смеси 2-этилгексанола. Кислотное число реакционной смеси опускается от начального уровня 110 мг КОН/г в начале кипения до 10 мг КОН/г через 165 минут, 1 мг КОН через 320 минут и 0,5 мг КОН/г через 365 минут. К этому моменту уровень заполнения реактора составляет 76%.
Пример 4 (согласно изобретению)
Используемое количество:
1070 кг ангидрида фталевой кислоты (жидкого)
2350 кг 2-этилгексанола
1 кг бутилтитаната
Сразу после помещения 400 кг 2-этилгексанола в реактор начинают нагревание. Одновременно добавляют ангидрид фталевой кислоты в жидкой форме и остаточный спирт (1950 кг). После нагревания реакционной смеси до температуры 120°С добавляют титановый катализатор. При температуре 170°С смесь начинает кипеть. К этому моменту максимальное наполнение реактора составляет 80%. В течение этерификации воду выделяют и отгоняют в виде азеотропной смеси 2-этилгексанола. Теперь уровень наполнения реактора составляет 78% (около 2 часов после кипения), затем после добавления свежего 2-этилгексанола (который не входит в основное количество) снова достигает 80% и такой уровень заполнения сохраняют до конца реакции дополнительным добавлением 2-этилгексанола. При окончании реакции (КЧ=0,5) избыток 2-этилгексанола на 120 кг больше, чем в сравнительном примере 3. Кислотное число реакционной смеси опускается от начального уровня 110 мг КОН/г в начале кипения до 10 мг КОН/г через 165 минут, 1 мг КОН через 300 минут и 0,5 мг КОН/г через 325 минут.
Данный пример демонстрирует, что в соответствии с предложенным способом время этерификации сокращается на 40 минут или на 4%. (Выход более 99,8%, относительно ангидрида фталевой кислоты).
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ получения сложных эфиров карбоновых кислот взаимодействием ди- или поликарбоновых кислот или их ангидридов со спиртами, причем реакционную воду удаляют со спиртом азеотропной дистилляцией, отличающийся тем, что количество жидкости, удаляемой азеотропной дистилляцией из реакции, полностью снова заменяют спиртом.
2. Способ по п.1, отличающийся тем, что жидкость, удаляемую азеотропной дистилляцией из реактора, полностью заменяют, причем удаляемую жидкость разделяют на водную фазу и спиртовую фазу, и спиртовую фазу, в которую дополнительно добавляют свежий спирт, возвращают в реакцию этерификации.
3. Способ по п.1, отличающийся тем, что количество жидкости, удаляемой азеотропной дистилляцией из реакции, полностью снова заменяют свежим спиртом.
4. Способ по одному из пп.1-3, отличающийся тем, что в качестве ди- или поликарбоновой кислоты используют фталевую кислоту или ангидрид фталевой кислоты.
5. Способ по одному из пп.1-3, отличающийся тем, что в качестве спирта используют н-бутанол, изо-бутанол, н-октанол-1, н-октанол-2, 2-этилгексанол, нонанолы, дециловые спирты или тридеканолы.
www.freepatent.ru