Диметиловый эфир и повышение пусковых свойств дизелей. Диметиловый эфир


Диметиловый эфир (ч.1) – Основные средства

В. Васильев

Сегодня злободневность проблем экологии определяется не только заботой о здоровье человечества, которое стало жертвой собственного прогресса, но и чисто экономическими потерями, непомерно дорого обходящимися как налогоплательщикам, так и природе.

Главной причиной ухудшающейся с каждым годом экологической ситуации в нашей стране, особенно в городах, стал неуклонный рост численности автомобильного парка. В настоящее время лишь в России он составляет 37 млн. ед., из которых на долю грузовиков и автобусов приходится около 6 млн. К 2010 г., по оценке экспертов, табун стальных «лошадей» увеличится еще в полтора раза. За этими цифрами кроются серьезные общегосударственные проблемы. Функционирование автотранспорта дает до 95% загрязнений воздуха, почти половину издаваемого шума и около 70% вредных воздействий на климат планеты. Ежегодно на жителей России обрушивается порядка 15 млн. т токсичных веществ, изрыгаемых выхлопными трубами автомобилей. Экологи не зря бьют тревогу. В масштабах страны доля автотранспорта в суммарных выбросах загрязняющих веществ в атмосферу всеми техногенными источниками достигает в среднем 40%, в выбросах парниковых газов – порядка 10%, в массе промышленных отходов – 2%, в сбросах вредных веществ со сточными водами – около 3%, в потреблении озоноразрушающих веществ – около 5%.

Усовершенствованный «Бычок» с дизелем Д-245.9, разработанным в НАМИ

В некоторых российских мегаполисах, таких как Москва, Санкт-Петербург, Нижний Новгород, Самара, Екатеринбург, загрязнение воздушного бассейна достигло критического уровня и стало главной причиной высокой заболеваемости, низкой продолжительности жизни и деградации окружающей природы. Не случайно проблема загрязнения атмосферы приобрела серьезную социальную и политическую окраску. Не лишним будет добавить, что прямой ущерб от работы автотранспортного комплекса России составляет свыше 4 млрд. USD в год, или около 2% валового национального продукта государства. Факты, как видим, совсем нерадостные.

Такая ситуация требует адекватных мер, и одна из наиболее действенных – применение альтернативных экологически более чистых видов моторного топлива и источников энергии, гибридных силовых установок автомобилей и автобусов. Это наиболее эффективный путь снизить негативное влияние автомобиля на экологию окружающей среды. Активно работают в этом направлении сегодня во многих развитых странах. Ведущие мировые автомобильные концерны инвестируют миллиарды в развитие транспорта и технологий альтернативного моторного топлива и источников энергии.

Вообще топливо для автотранспорта можно рассматривать как альтернативное при выполнении нескольких условий. Первое – это наличие и доступность сырьевых ресурсов, в будущем предпочтение будет отдаваться топливу, вырабатываемому из возобновляемых источников энергии. Второе – технология и оборудование для производства топлива в коммерческих объемах должны обеспечивать максимально низкую его стоимость, в том числе в процессе транспортировки, хранения и распределения. Третье. Топливо должно обеспечить автомобилю высокие потребительские качества, в частности, речь идет о мощностных и экономических параметрах двигателя. Четвертое – топливо должно быть экологически безопасным при производстве, транспортировке, хранении, заправке и при сжигании в двигателях.

В России наиболее предпочтительным представляется частичное замещение традиционных видов моторного топлива синтетическими жидкими углеводородами, получаемыми из природного газа, в силу низкой себестоимости и практической неограниченности их ресурсов в стране.

Варианты установки баллонов с ДМЭ на раме грузовика

Из числа видов перспективного топлива для двигателей внутреннего сгорания особого внимания заслуживает химически инертный диметиловый эфир Ch4-O-Ch4 (ДМЭ), который удовлетворяет перечисленным требованиям. В настоящее время это единственное синтетическое топливо, которое обеспечит полную замену традиционного дизельного. Интерес к диметиловому эфиру объясняется и тем, что в последние годы отечественная химическая промышленность разработала новые технологии его получения из метана. Достижения московских нефтехимических научно-исследовательских институтов и предприятий позволяют впервые в стране приступить к целенаправленным работам по практическому внедрению диметилового эфира в качестве альтернативы дизельному топливу и начать эксплуатацию дизельного автотранспорта на этом экологически чистом виде топлива. Для заправки транспортных средств может применяться автогазозаправочное оборудование и газозаправочные комплексы, используемые для заправки автомобилей пропан-бутаном.

ДМЭ известен достаточно давно, но раньше его применяли лишь в парфюмерии для создания давления в баллонах с лаками и дезодорантами. Там он заменил вредные газы – фреоны, бутан и пропан. Использовался диметиловый эфир также как хладагент и растворитель. В последнее десятилетие XX века австрийские, датские и американские исследователи предложили использовать ДМЭ в качестве альтернативы дизельному топливу. Сегодня общественный транспорт Швеции и Дании полностью переведен на ДМЭ. Аналогичные мероприятия в сфере грузового автотранспорта проводит Япония. Согласно прогнозам аналитиков, через 15...20 лет весь тяжелый и среднетоннажный автотранспорт в мире полностью переведут на ДМЭ.

Диметиловый эфир производится из природного газа, угля или биотоплива. Это производная метанола, которая получается в процессе преобразования газа в жидкое состояние. Сегодня в мире потребление диметилового эфира составляет около 150 тыс. т в год. Существует два типа ДМЭ: высший сорт – содержание диметилового эфира не менее 99,5%, используется в парфюмерии, а в качестве моторного топлива применяется низший сорт – содержание ДМЭ на уровне 95%.

Исследования показывают, что применение диметилового эфира в качестве моторного топлива для дизелей становится поводом для весьма оптимистичных прогнозов. Действительно, у ДМЭ есть ряд преимуществ по сравнению с дизельным топливом и другими альтернативными видами топлива. Он является газообразным. В нормальных условиях это газ, и его молекулы не имеют химических связей углерод–углерод, что исключает образование в пламени радикалов С2, способствующих сажеобразованию при сгорании. При этом снимется главная проблема дизеля – карбонизация значительной части топлива с последующим замедлением скорости выгорания дисперсного углерода. К благоприятным физико-химическим параметрам ДМЭ относят повышенную испаряемость, что снижает требования к дисперсности распыления, позволяет понизить давление впрыска и обеспечивает хорошее смесеобразование. Отличная самовоспламеняемость в дизельном двигателе (у ДМЭ цетановое число ЦЧ=55...60 по сравнению с ЦЧ=45...50 для дизельного топлива) улучшает пусковые качества и способствует «мягкому» сгоранию. Высокое содержание в ДМЭ связанного кислорода (35%) повышает равномерность распределения в камере сгорания, препятствуя образованию NOх, наиболее агрессивного компонента дизельного топлива. Использование диметилэфира – это практически полное отсутствие дымности отработавших газов и значительное снижение шума от двигателя.

Баллон для хранения диметилэфира

Немаловажно и то, что по физическим свойствам ДМЭ подобен пропан-бутановым газам, нашедшим широкое применение в качестве альтернативного топлива для двигателей внутреннего сгорания. В частности, ДМЭ имеет близкие значения параметров насыщения: температура перехода в жидкую фазу минус 25°C (у пропана – минус 50°C), давление насыщенных паров 5,1 кгс/см2 (у пропана – 8 кгс/см2) при температуре 20°С. Как пропан и бутан, ДМЭ следует хранить в сжиженном состоянии в газовом баллоне под давлением. Технология работы со сжиженными газами достаточно хорошо отработана, поэтому упомянутое свойство диметилового эфира не является препятствием для его практического применения.

Результаты испытаний дизелей, работающих на диметиловом эфире, показали реальную возможность значительно снизить уровень вредных выбросов отработавших газов. Так, в 3...4 раза отмечено снижение окислов азота NOх при практически бездымной работе двигателя на всех режимах. Кроме того, при работе на ДМЭ выявлено сохранение, а на некоторых режимах и улучшение до 5% экономичности дизеля, повышение его эффективного к.п.д. по сравнению с работой на дизельном топливе.

Сравнение результатов замера внешнего шума автомобилей, работающих

Основным недостатком ДМЭ является малая кинематическая вязкость (на порядок меньше, чем дизельного топлива), в результате чего затрудняется герметизация подвижных узлов уплотнения топливной аппаратуры, а также повышается склонность к задирам прецизионных трущихся пар. По сравнению со сжиженным природным газом теплотворная способность на тонну диметилэфира на 45% ниже теплотворности на тонну сжиженного природного газа. Для производства диметилэфира требуется не только более высокий уровень предварительных капиталовложений, но и больший объем сырьевого газа для производства продукта с эквивалентной теплотворной способностью. Для снижения выбросов СО и СН необходимо предусмотреть дополнительные меры конструкционного характера.

Адаптация обычных дизелей для работы на диметиловом эфире заключается в модернизации существующей топливоподающей аппаратуры. Поскольку плотность ДМЭ на 20%, а удельная массовая теплотворность на 32% ниже, чем дизельного топлива, для сохранения энергоемкости объемная подача ДМЭ в цилиндры двигателя должна быть значительно большей (объемная теплотворная способность ДМЭ составляет 18,2 МДж/л). Для устранения склонности к задирам прецизионных трущихся пар в конструкции топливоподающей аппаратуры принимаются специальные меры, например, подвод к плунжерным парам масла под давлением с целью их уплотнения, а также подмешивание к ДМЭ специальной противозадирной присадки. По зарубежным данным, этот компонент способствует увеличению кинематической вязкости ДМЭ до уровня дизельного топлива.

Поскольку при течении по тракту топливной аппаратуры значение локальной скорости может возрастать до 100 м/с (например, при истечении топлива отсечки из плунжерных пар топливного насоса), из-за снижения локального статического давления в потоке может происходить вскипание ДМЭ, образование паровых пробок и запирание топливной аппаратуры. Поэтому давление на входе в топливный насос высокого давления (ТНВД) должно быть повышено. Наряду с этим вводятся элементы безопасности, топливные баки заменяют баллонами низкого давления, по конструкции аналогичными тем, что применяют на автомобилях, работающих на сжиженном нефтяном газе, или устанавливают дополнительные баллоны с диметиловым эфиром.

os1.ru

Диметиловый эфир и повышение пусковых свойств дизелей

Рассмотрены достоинства и недостатки применения диметилового эфира (ДМЭ) в качестве альтернативного топлива для дизельных двигателей. Проведены сравнения с другими видами топлива, используемых в дизельных двигателях. Приведены схемы конструкции дизельных двигателей работающих на ДМЭ. Авторы приходят к выводу, что несмотря на перспективы широкого применения в качестве топлива диметилового эфира, первоначально будут использоваться двухтопливные схемы и смешивание ДТ с ДМЭ. Традиционные конструкции также будут требовать внимания и дальнейших разработок устройств и способов улучшения пусковых и эксплуатационных качеств дизелей в условиях пониженных температур.

Освоение районов Арктики вызывает потребность в повышении пусковых качеств дизельных двигателей в условиях пониженных температур. Возможным решением данной проблемы является использование незамерзающего топлива с высокими пусковыми свойствами. По мнению российских ученых таким топливом может стать диметиловый эфир (ДМЭ), который в отличие от дизельного топлива (ДТ) не подвержен помутнению и кристаллизации, и не затрудняет топливоподачу [1]. При этом северные районы России богаты углеводородными ресурсами, которые можно использовать в качестве сырья для получения такого топлива. [2]

Диметиловый эфир (ДМЭ)— экологически чистое, газообразное топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Получают из природного газа, угля или биотоплива. Является производной метанола, получаемой в процессе преобразования газа в жидкое состояние. Цетановое число (ЦЧ) более 55, при том что у дизельного топлива 45...50, это обеспечивает отличные самовоспламеняемость и пусковые качества, способствует «мягкому» сгоранию. [3] В настоящее время это единственное синтетическое топливо, которое может заменить дизельное топливо. Принципиальная схема дизеля работающего на ДМЭ показана на рисунке 1 [4].

Рис.1. Принципиальная схема дизеля на ДМЭ

В нормальных условиях молекулы диметилового эфира не имеют химических связей углерод– углерод, что исключает образование в пламени радикалов С2, способствующих сажеобразованию при сгорании. При этом снимется главная проблема дизеля – карбонизация значительной части топлива с последующим замедлением скорости выгорания дисперсного углерода. К благоприятным физико-химическим параметрам (Таблица 1.) также относят повышенную испаряемость, что снижает требования к дисперсности распыления, позволяет понизить давление впрыска и обеспечивает хорошее смесеобразование.

Дизель на ДМЭ хорошо запускается зимой при температуре –25...30 °С. Наряду с этим высокая испаряемость ДМЭ позволяет уверенно запускать дизель семейства Д-245, устанавливаемый на тракторах, автомобилях, автобусах, при температуре до – 24 °С без применения предпускового подогревателя.

Таблица 1. Физические свойства дизельного топлива, ДМЭ и других углеводородных топлив

Показатель

Дизельное топливо

Диметиловый эфир

Метан

Пропан

Метанол

Химическая формула

Сnh2,8n

СН3ОСН3

СН4

С3Н8

СН3ОН

Температура кипения, °С

180- 370

-25,1

161,5

-42,0

64,6

Плотность при 20°С, г/см3

0,84

0,69

0,42

0,49

0,79

Давление насыщенных паров при 25°С, МПа

-

0,61

24,6

0,93

-

Вязкость кинематическая при 20°С, мм2/с

3- 5

0,15

-

0,17

-

Температура воспламенения, °С,

250

235

650

504

470

Предел взрываемости, %

0,6- 7,5

3,4- 15

5- 15

2,1- 9,4

5,5- 26

Цетановое число

40- 55

55- 60

0

5

5

Низшая теплота сгорания, к Дж/кг

42500

28900

50300

46500

21100

Температура вспышки, °С

+70

-70

-188

-

15,6

Температура сжижения, °С

-

20

-161

-

-

Вязкость:

динамич.η·10-6, Н·с/м2

3300

100

10,38

7,65

600

Теоретическое количество воздуха в стехиометрической смеси, м3/м3 кг/кг

14,2

9,13

9,52

17,2

23,81

15,6

6,52

Мировое потребление диметилового эфира составляет около 150 тыс. тонн в год и продолжает нарастать. Однако, ДМЭ не лишен недостатков, и они хорошо известны: малые кинематическая вязкость и величина теплотворной способности, дорогостоящее производство, требуется применение устройств нейтрализации отработавших газов (ОГ), снижение надежность двигателя.

Малая кинематическая вязкость приводит к невозможности герметизации подвижных уплотнений узлов топливной аппаратуры и повышает риск задира прецизионных трущихся пар, из-за малой смазывающей способности. Для компенсации этого недостатка в диметилэфир необходимо добавлять лубрификаторы. А химическая агрессивность вызывает коррозию.

Теплотворная способность диметилэфира на 45% ниже, чем у сжиженного природного газа (СПГ). Для производства ДМЭ требуется больший объем сырьевого газа, чем для производства продукта с эквивалентной теплотворной способностью. А низкая плотность по сравнению с дизельным топливом обусловливает увеличенную в 1,7- 1,9 объемную цикловую подачу.

Кроме того, необходимо учитывать значительную зависимость свойств ДМЭ от температуры, что вызывает необходимость введения в систему топливоподачи терморегулятора.

Возможно ключевую роль в росте популярности ДМЭ в качестве топлива, сыграет применение двухтопливных систем питания двигателей, принципальная схема конструкции такой системы представлена на рис.2 [4].

Рис.2. Принципальная схема двухтопливной системы

Также перспективным является внедрение экологически более чистого ДМЭ в смеси с дизельным топливом. Доля альтернативного топлива в рабочей смеси может составлять от 10 до 40%. В период работы двигателя на такой смеси происходит интенсификация рабочего процесса дизеля, снижается содержание вредных веществ в отработавших газах (ОГ) даже на относительно старых моделях дизельных двигателей.

Выводы: Дизельный двигатель должен быть специально приспособлен для работы на ДМЭ, при этом использование ДМЭ вместо ДТ не дает существенного снижения эксплуатационных затрат. Также не ясна ситуация с инфраструктурой, которую придется создавать заново или переделывать действующие АГЗС, в то же время ресурсы природного газа, являющегося сырьем для получения ДМЭ, ни в балансе Москвы или других регионах России, ни в балансе Газпрома пока не предусмотрены.[5]

Выдающийся советский и российский ученый- химик Н.А. Платэ (1934 -2007) считал, что замену дизельного топлива на ДМЭ нужно производить непосредственно на малодебитных газовых месторождениях. Таким образом, можно заключить, что Арктическая зона может стать одновременно и полигоном, и колыбелью для широкомасштабного внедрения ДМЭ в качестве топлива для дизелей.

Очевидно, что при переходе на новый вид топлива первоначально будут использоваться двухтопливные схемы и смешивание ДТ с ДМЭ. И традиционные конструкции также будут требовать внимания и дальнейших разработок устройств и способов улучшения пусковых и эксплуатационных качеств дизелей в условиях пониженных температур.

novainfo.ru

Диметиловый эфир - Госстандарт

Диметиловый эфир (ДМЭ) является простейшим эфиром и имеет формулу состава СН3-О-СН3 (или С2Н6О). При нормальных атмосферных условиях ДМЭ находится в газообразном состоянии, но ожижается уже при давлении 0,53 МПа. ДМЭ не токсичен и не загрязняет окружающую сре- ду. В 1987 году был подписан Монреальский протокол, запрещающий про- изводство озоноразрушающих соединений. ДМЭ имеет нулевой потенциал озоноразрушения в атмосфере – ODP. В 1997 году разработан Киотский про- токол, направленный на ограничение парникового эффекта нашей планеты. ДМЭ имеет нулевой потенциал глобального потепления - GWP.

Из-за соединения двух метиловых радикалов Ch4 атомом кислорода и его большой доли (около 35%), при сгорании в дизеле практически не обра- зуются сажа. Но из-за содержания кислорода ДМЭ имеет низкую теплоту сгорания.

Диметиловый эфир может быть получен из любого углеводородного сырья (в том числе - из биомассы), но основным сырьем для производства ДМЭ в России является природный газ и его продукт окисления - синтез-газ . Природный газ (метан Ch5) реагирует с кислородом и водяным паром с образованием монооксида СО и диоксида СО2 углерода по реакциям:

Ch5 + 1,5 О2 -> CO + 2 h3O; Ch5 + h3О -> 3 h3 + СO; CO + h3О -> CО2 + h3 . 

При последующем каталитическом синтезе из СО и СО2 через промежуточное получение метанола CН3OН образуется ДМЭ (Ch4OCh4):

3 h3 + СО2 -> CН3OН + 2 h3O;h3О + СО -> h3 + СO2;2 Ch4OH -> Ch4OCh4 + h3O.

Пока промышленное производство ДМЭ осуществляется исключительно на стационарных установках. Однако быстрый прогресс в технологии производства ДМЭ (в частности, снижение давления синтеза с 32 до 9 МПа, переход на низкотемпературный катализатор и т.д.) может привести к появлению компактных реакторов ДМЭ, которые можно будет разместить на борту транспортного средства. Работы в этом направлении проводятся рядом зарубежных фирм, в частности фирмой Volvo .

В последние годы все большее внимание исследователей привлекает использование ДМЭ в качестве экологически чистого топлива для дизелей. Исследованы его физико-химические свойства, процессы подачи, распыливания и сгорания, проведены безмоторные исследования систем подачи ДМЭ в дизель, экспериментальные исследования дизелей на ДМЭ и его смесях с другими топливами - жидкими (дизельное топливо, спирты, масла) и газообразными (природный газ, синтез-газ), оценены экологические качества дизелей, работающих на ДМЭ.

Физико-химические свойства диметилового эфира

Применительно к разным процессам в ДВС актуальны свойства жидкого или газообразного ДМЭ, условий фазовых превращений, растворимости, химической активности и др.В таблице приведены важнейшие для ДВС свойства ДМЭ, в частности, жидкого, дополненные для сравнения столбцом для традиционного дизельного топлива (ДТ). Некоторые из свойств требуют комментариев и конкретизации.

Важнейшие физико-химические и моторные свойства ДМЭ и ДТ.

Характеристика топлива

ДМЭ

ДТ

Молярная масса СnН1,8n

46

190...220

Содержание химических элементов массовое, %:- углерод

52,2

86,6

-водород

13

13

-кислород

34,8

0,4

Коэффициент сжимаемости истинный при 20 0С и 0,1 МПа, 1/Па

157*10-11

67*10-11

Плотность жидкой фазы при 20 0С, кг/м3

668

831...845

Кинематическая вязкость (жидкость, 20 0С), мм2/с

3

0,23

Коэффициент поверхностного натяжения, Н/м

0,0012

0,028

Растворимость в воде при 20 0С, кг/м3

70

-

Давление насыщенных паров при 20 0С, МПа

0,53

0,0008

Температура кипения (ожижения) при 0,1 МПа, 20 0С

-24,8

180...371

Критическое давление/температура, МПа/К

5,37/400

-

Теплота парообразования при 20 0С, кДж/кг

410

210...250

Низшая теплотворная способность, МДж/кг

28,84

42,5

Запас энергии на борту автомобиля, МДж/л

18,9

35,9

Цетановое число

>55

40...55

Стехиометрическое соотношение l0, кг/кг

9,0

14,56

Температура самовоспламенения, 0С

235

240...310

Выброс СО2 при полном сгорании, г/МДж

67,5

74,2

 

 

 

 

 

 

 

 

 

himiya.gosstandart.info

Диметиловый эфир — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Общие Физические свойства Термические свойства Структура Классификация
Диметиловый эфир
200x300px
Dimethyl-ether-3D-balls.png
Хим. формула C2H6Oh4С-О-СН3
Состояние бесцветный газ
Молярная масса 46,07 г/моль
Плотность 0,00209 г/см³
Т. плав. −138,5 °C
Т. кип. −24,9 °C
Т. всп. −41 °C
Кр. точка 127,0 °C,5370 кПа,0,272 г/см³
Кр. давл. 53 атм
Дипольный момент 1,3 Д
Рег. номер CAS 115-10-6
PubChem Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field 'wikibase' (a nil value).
Рег. номер EINECS Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field 'wikibase' (a nil value).
SMILES

 

[http://chemapps.stolaf.edu/jmol/jmol.php?model=COC COC]

InChI

 

[http://chemapps.stolaf.edu/jmol/jmol.php?&model=InChI=%3Cstrong%20class%3D%22error%22%3E%3Cspan%20class%3D%22scribunto-error%22%20id%3D%22mw-scribunto-error-11%22%3E%D0%9E%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%20Lua%3A%20callParserFunction%3A%20function%20%26quot%3B%23property%26quot%3B%20was%20not%20found.%3C%2Fspan%3E%3C%2Fstrong%3E Ошибка Lua: callParserFunction: function "#property" was not found.]

[https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pccompound&term=%22%3Cstrong%20class%3D%22error%22%3E%3Cspan%20class%3D%22scribunto-error%22%20id%3D%22mw-scribunto-error-14%22%3E%D0%9E%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%20Lua%3A%20callParserFunction%3A%20function%20%26quot%3B%23property%26quot%3B%20was%20not%20found.%3C%2Fspan%3E%3C%2Fstrong%3E%22%5BInChIKey%5D Ошибка Lua: callParserFunction: function "#property" was not found.]

Кодекс Алиментариус Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field 'wikibase' (a nil value).
RTECS Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field 'wikibase' (a nil value).
ChemSpider Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field 'wikibase' (a nil value).
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Димети́ловый эфи́р (C2H6O) (метиловый эфир, метоксиметан, древесный эфир) Н3С-О-СН3 — широко применяемый на практике простой эфир.

Свойства

Экспериментальное давление паров диметилового эфира T, K Pexp, кПа T, K Pexp, кПа T, K Pexp, кПа
233.128 54.61 298.172 596.21 348.147 2022.45
238.126 68.49 303.160 687.37 353.146 2242.74
243.157 85.57 305.160 726.26 353.158 2243.07
248.152 105.59 308.158 787.07 358.145 2479.92
253.152 129.42 313.156 897.59 363.148 2735.67
258.160 157.53 316.154 968.55 368.158 3010.81
263.160 190.44 318.158 1018.91 373.154 3305.67
268.161 228.48 323.148 1152.35 378.150 3622.60
273.153 272.17 328.149 1298.23 383.143 3962.25
278.145 321.87 333.157 1457.50 388.155 4331.48
283.160 378.66 333.159 1457.76 393.158 4725.02
288.174 443.57 338.154 1631.01 398.157 5146.82
293.161 515.53 343.147 1818.80 400.378 5355.8

J. Chem. Eng. Data 2004, 49, 32-34

Производство

В промышленности производится из природного газа, угля, или биомассы.

Применение

Применение в качестве топлива

Диметиловый эфир — экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53. Применение диметилового эфира не требует специальных фильтров, но необходима переделка систем питания (установка газобалонного оборудования, корректировка смесеобразования) и зажигания двигателя. Без переделки возможно применение на автомобилях с LPG-двигателями при 30 % содержании в топливе.

Теплота сгорания ДМЭ около 30 МДж/кг, у классических нефтяных топлив — около 42 МДж/кг. Одна из особенностей применения ДМЭ — его более высокая окисляющая способность (благодаря содержанию кислорода), чем у классического топлива.

В июле 2006 года Национальная Комиссия Развития и Реформ (NDRC) (Китай) приняла стандарт использования диметилового эфира в качестве топлива. Китайское правительство будет поддерживать развитие диметилового эфира, как возможную альтернативу дизельному топливу. В ближайшие 5 лет Китай планирует производить 5—10 млн тонн диметилового эфира в год.

Автомобили с двигателями, работающими на диметиловом эфире разрабатывают KAMAZ, Volvo, Nissan и китайская компания Shanghai Automotive.

Опасность

Является слабым наркотиком. Огнеопасен, смесь с воздухом взрывоопасна, температура вспышки −41 °C. ПДК в воздухе рабочей зоны составляет 200 мг/м³.

Напишите отзыв о статье "Диметиловый эфир"

Отрывок, характеризующий Диметиловый эфир

Вскочив со стула, я подбежала к моему единственному сокровищу, моей девочке и, схватив в объятия, сжала что было сил... – Ой, мамочка, ты меня так задушишь!.. – звонко засмеялась Анна. А моя душа впитывала этот смех, как приговорённый к смерти впитывает тёплые прощальные лучи уже заходящего солнца... – Ну что ты, мамочка, мы ведь ещё живы!.. Мы ещё можем бороться!.. Ты ведь мне сама говорила, что будешь бороться, пока жива... Вот и давай-ка думать, можем ли мы что-то сделать. Можем ли мы избавить мир от этого Зла. Она снова меня поддерживала своей отвагой!.. Снова находила правильные слова... Эта милая храбрая девочка, почти ребёнок, не могла даже представить себе, каким пыткам мог подвергнуть её Караффа! В какой зверской боли могла утонуть её душа... Но я-то знала... Я знала всё, что её ждало, если я не пойду ему навстречу. Если не соглашусь дать Папе то единственное, что он желал. – Хорошая моя, сердце моё... Я не смогу смотреть на твои мучения... Я тебя не отдам ему, моя девочка! Севера и ему подобных, не волнует, кто останется в этой ЖИЗНИ... Так почему же мы должны быть другими?.. Почему нас с тобой должна волновать чья-то другая, чужая судьба?!. Я сама испугалась своих слов... хотя в душе прекрасно понимала, что они вызваны всего лишь безысходностью нашего положения. И, конечно же, я не собиралась предавать то, ради чего жила... Ради чего погиб мой отец и бедный мой Джироламо. Просто, всего на мгновение захотелось поверить, что мы можем вот так взять и уйти из этого страшного, «чёрного» караффского мира, забыв обо всём... забыв о других, незнакомых нам людях. Забыв о зле... Это была минутная слабость усталого человека, но я понимала, что не имела право допускать даже её. И тут, в довершении всего, видимо не выдержав более насилия, жгучие злые слёзы ручьём полились по моему лицу... А ведь я так старалась этого не допускать!.. Старалась не показывать моей милой девочке, в какие глубины отчаяния затягивалась моя измученная, истерзанная болью душа... Анна грустно смотрела на меня своими огромными серыми глазами, в которых жила глубокая, совсем не детская печаль... Она тихо гладила мои руки, будто желая успокоить. А моё сердце криком кричало, не желая смиряться... Не желая её терять. Она была единственным оставшимся смыслом моей неудавшейся жизни. И я не могла позволить нелюди, звавшимся римским Папой, её у меня отнять! – Мамочка, не волнуйся за меня – как бы прочитав мои мысли, прошептала Анна. – Я не боюсь боли. Но даже если это будет очень больно, дедушка обещал меня забрать. Я говорила с ним вчера. Он будет ждать меня, если нам с тобой не удастся... И папа тоже. Они оба будут меня там ждать. Вот только тебя оставлять будет очень больно... Я так люблю тебя, мамочка!.. Анна спряталась в моих объятиях, будто ища защиты... А я не могла её защитить... Не могла спасти. Я не нашла «ключа» к Караффе... – Прости меня, солнышко моё, я подвела тебя. Я подвела нас обеих... Я не нашла пути, чтобы уничтожить его. Прости меня, Аннушка... Час прошёл незаметно. Мы говорили о разном, не возвращаясь более к убийству Папы, так как обе прекрасно знали – на сегодняшний день мы проиграли... И не имело значения, чего мы желали... Караффа жил, и это было самое страшное и самое главное. Нам не удалось освободить от него наш мир. Не удалось спасти хороших людей. Он жил, несмотря ни на какие попытки, ни на какие желания. Несмотря ни на что... – Только не сдавайся ему, мамочка!.. Прошу тебя, только не сдавайся! Я знаю, как тебе тяжело. Но мы все будем с тобой. Он не имеет права жить долго! Он убийца! И даже если ты согласишься дать ему то, что он желает – он всё равно уничтожит нас. Не соглашайся, мама!!! Дверь открылась, на пороге снова стоял Караффа. Но теперь он казался очень чем-то недовольным. И я примерно могла предположить – чем... Караффа более не был уверен в своей победе. Это тревожило его, так как оставался у него только лишь этот, последний шанс. – Итак, что же вы решили, мадонна? Я собрала всё своё мужество, чтобы не показать, как дрожит мой голос, и совершенно спокойно произнесла: – Я уже столько раз отвечала вам на этот вопрос, святейшество! Что же могло измениться за такое короткое время? Приходило ощущение обморока, но, посмотрев в сияющие гордостью глаза Анны, всё плохое вдруг куда-то исчезло... Как же светла и красива была в этот страшный момент моя дочь!.. – Вы сошли с ума, мадонна! Неужели вы сможете так просто послать свою дочь в подвал?.. Вы ведь прекрасно знаете, что её там ждёт! Опомнитесь, Изидора!.. Вдруг, Анна вплотную подошла к Караффе и звонким ясным голосом произнесла: – Ты не судья и не Бог!.. Ты всего лишь – грешник! Потому и жжёт Перстень Грешников твои грязные пальцы!.. Думаю, он одет на тебя не случайно... Ибо ты самый подлый из них! Ты не испугаешь меня, Караффа. И моя мать никогда не подчинится тебе!

o-ili-v.ru

Способ получения диметилового эфира

Настоящее изобретение относится к способу получения продукта диметилового эфира каталитической конверсией синтез-газа в диметиловый эфир, предусматривающий контакт потока синтез-газа, содержащего двуокись углерода, на стадии синтеза диметилового эфира в одном или более реакторах и с одним или более катализаторами, активными в образовании метанола и дегидратации метанола до диметилового эфира, с получением смеси продукта, содержащей компоненты диметиловый эфир, метанол, двуокись углерода и непрореагировавший синтез-газ, промывание смеси продукта, содержащей двуокись углерода и непрореагировавший синтез-газ, в газопромывочной зоне жидким растворителем, обогащенным карбонатом калия или амином, тем самым селективно абсорбируя двуокись углерода в жидкий растворитель. Полученную таким образом обработанную смесь продукта подвергают стадии дистилляции для отделения метанола и воды от потока диметилового эфира и непрореагировавшего синтез-газа с пониженным содержанием двуокиси углерода и отделение непрореагировавшего синтез-газа от продукта диметилового эфира. Способ позволяет улучшить выход процесса и конечную очистку полученного диметилового эфира. 5 з.п. ф-лы, 1 пр., 3 табл., 1 ил.

 

Данное изобретение относится к способу получения диметилового эфира из синтез-газа. В частности, данное изобретение относится к улучшенному способу синтеза диметилового эфира с применением химической промывки потока сырья со стадии синтеза эфира для удаления двуокиси углерода из сырья для улучшения выхода процесса и конечной очистки полученного диметилового эфира.

Предшествующий уровень техники

Способ в соответствии с данным изобретением относится к очистке диметилового эфира, полученного из оксидов углерода и водородсодержащего синтез-газа.

Превращение синтез-газа в диметиловый эфир осуществляют в одном или более реакторах, в которых синтез-газ каталитически превращают в метанол, как показано в уравнении (1), и диметиловый эфир, как показано в уравнении (2). Также происходит реакция смещения, показанная в уравнении (3).

Максимальной конверсии синтез-газа достигают при получении диметилового эфира при стехиометрическом соотношении водорода и окиси углерода, равном единице. При соотношении выше или ниже единицы получают меньшее количество диметилового эфира. При максимальной конверсии (Н2/СО≈1) вся реакции проходит по существу в соответствии с уравнением (4):

Двуокись углерода растворима в диметиловом эфире, и для получения продукта диметилового эфира с требуемой чистотой необходимо удалять образовавшуюся двуокись углерода. Кроме того, при удалении двуокиси углерода состав непрореагировавшего синтез-газа, который рециркулируют в реактор синтеза дметилового эфира, приближен к тому, который имеет синтез-газ, применяемый для получения диметилового эфира, что также является дополнительным преимуществом. Удаление двуокиси углерода из диметилового эфира после реактора синтеза может стать очень дорогим.

Известны три основных метода удаления двуокиси углерода. В первом методе диметиловый эфир синтезируют согласно реакциям (1) - (3) выше. Смешанный выходящий поток, содержащий непрореагировавший синтез-газ вместе с присутствующей двуокисью углерода, затем отделяют от продукта диметилового эфира, который также содержит некоторое количество непрореагировавшего метанола. Отделенный поток синтез-газа и двуокиси углерода рециркулируют в технологический поток синтез-газа, входящий в реактор. Этот метод удобным образом может применяться для обогащенного водородом синтез-газа, имеющего, например, соотношение водорода и окиси углерода выше 5.

Во втором известном методе смешанный выходящий поток, содержащий непрореагировавший синтез-газ вместе с двуокисью углерода, отделяют из продукта диметилового эфира. Однако двуокись углерода затем далее отделяют от синтез-газа. Это может быть осуществлено промыванием этого потока, например, подходящим соединением амина, таким как метилдиэтаноламин, МДЭА. Поток синтез-газа, который не содержит двуокись углерода, затем рециркулируют в технологический поток синтез-газа, входящий в реактор. Полученная двуокись углерода может применяться в других процессах, например, для получения синтез-газа из природного газа автотермическим реформингом двуокиси углерода.

В третьем известном методе только синтез-газ отделяют от продукта диметилового эфира и двуокиси углерода. Продукт диметилового эфира, таким образом, содержит и метанол и двуокись углерода. Отделенный синтез-газ рециркулируют в технологический поток синтез-газа, входящий в реактор.

В данной области техники известны различные растворители для удаления двуокиси углерода из смесей с синтез-газом. Выбор растворителя зависит от способности растворять диметиловый эфир и двуокись углерода, и идеальный растворитель должен обладать высокой растворяющей способностью для двуокиси углерода и низкой летучестью.

В патенте США №5908963 описан способ получения диметилового эфира из синтез-газа, в котором синтез-газ отделяют от продукта диметилового эфира и рециркулируют в технологический поток синтез-газа, входящий в цикл синтеза диметилового эфира. Присутствие избытка метанола в продукте диметилового эфира является объектом внимания в описанном способе, и удаление двуокиси углерода не рассматривается.

В патенте США №6458856 описан одностадийный каталитический способ конверсии для получения диметилового эфира. После каталитической конверсии синтез-газа в диметиловый эфир выходящий из реактора поток разделяют на паровую смесь, содержащую диметиловый эфир, двуокись углерода и непрореагировавший синтез-газ. Паровую смесь промывают с применением газопромывающего растворителя для удаления диметилового эфира и двуокиси углерода от непрореагировавшего синтез-газа. Газопромывающий растворитель содержит смесь диметилового эфира и метанола. Непрореагировавший синтез-газ рециркулируют в диметиловый реактор.

В этой ссылке также описан известный уровень техники, в котором применяют газо-промывающие растворители, такие как метанол, вода, смеси метанола/воды, диметиловый эфир или этанол.

Диметиловый эфир является хорошим растворителем для двуокиси углерода, но является очень летучим, в то время как метанол является худшим растворителем для двуокиси углерода, чем диметиловый эфир, но обладает преимуществом меньшей летучести. Поэтому желателен способ получения диметилового эфира из синтез-газа, в котором возможно применение растворителя, обладающего высокой растворяющей способностью для двуокиси углерода и, одновременно, низкой летучестью.

Краткое содержание изобретения

В общем изобретение относится к улучшенному способу синтеза диметилового эфира с применением метода химической абсорбции двуокиси углерода и, при необходимости, последующего метода твердого адсорбента для удаления двуокиси углерода, присутствующей в синтез-газе и образованной во время превращения газа в диметиловый эфир.

Более конкретно, данное изобретение относится к способу получения продукта диметилового эфира каталитической конверсией синтез-газа в диметиловый эфир, предусматривающему контакт потока синтез-газа, содержащего двуокись углерода, на первой стадии синтеза диметилового эфира с одним или более катализаторами, активными в образовании метанола и дегидратации метанола до диметилового эфира, с получением смеси продукта, содержащей компоненты диметиловый эфир, метанол. двуокись углерода и непрореагировавший синтез-газ, промывание смеси продукта. содержащей двуокись углерода и непрореагировавший синтез-газ, в газопромывочной зоне жидким растворителем, обогащенным карбонатом калия или амином, тем самым селективно абсорбируя двуокись углерода в жидкий растворитель, подвергание таким образом обработанной смеси продукта стадии дистилляции для отделения метанола и воды от потока диметилового эфира и непрореагировавшего синтез-газа с пониженным содержанием двуокиси углерода и отделение непрореагировавшего синтез-газа от продукта диметилового эфира.

Жидкие растворители, особенно подходящие для применения в соответствии с данным изобретением, выбирают из водного растворителя, содержащего карбонат калия, употребляющегося в известных способах Benfield™, Vetrocoke™ или Catacarb™.

В одном из вариантов осуществления данного изобретения смесь продукта, обработанную жидким растворителем, подвергают дальнейшему контакту с твердым адсорбентом двуокиси углерода для более тщательного удаления двуокиси углерода.

Подходящие твердые адсорбенты для селективного удаления двуокиси углерода выбирают из группы цеолитов и молекулярных сит, таких как 13-Х и активированный оксид алюминия.

В другом варианте осуществления непрореагировавший синтез-газ, отделенный от продукта диметилового эфира и обедненный двуокисью углерода, рециркулируют в синтез диметилового эфира.

В еще одном варианте осуществления данного изобретения метанол и воду, отделенные от продукта диметилового эфира, передают на вторую стадию синтеза диметилового эфира для дальнейшего превращения метанола в диметиловый эфир.

Краткое описание чертежей

На Фиг.1 показана упрощенная технологическая схема определенного варианта осуществления данного изобретения, в котором применяется одностадийный процесс синтеза диметилового эфира.

Подробное описание изобретения

На Фиг.1 показаны общие стадии способа получения диметилового эфира из синтез-газа.

Синтез-газ 1 подают в реактор 2 синтеза ДМЭ для каталитической конверсии в метанол и ДМЭ согласно реакциям (1) и (2). Реакция смещения также проходит согласно реакции (3). Выходящий поток из реактора 2 синтеза ДМЭ содержит смесь продукта 3, которая содержит смесь диметилового эфира, двуокиси углерода и непрореагировавшего синтез-газа. Смесь продукта 3 охлаждают и направляют в абсорбционную установку 4 и десорбируют водным раствором, содержащим от 20 до 40 мас.% карбоната калия для удаления двуокиси углерода. Обработка карбонатом калия основана на обратимой реакции (5).

Благодаря указанной выше операции десорбции содержание двуокиси углерода в выходящем потоке 5 из зоны десорбции ниже около 500 объем, чнм (частей на миллион). При необходимости, если желательны более низкие уровни двуокиси углерода, выходящий поток 5 может быть направлен в неподвижный слой твердого адсорбента 6, где двуокись углерода селективно адсорбируют в пористую систему адсорбента до содержания в интервале одной или менее объем. чнм. Подходящие твердые адсорбенты выбирают из группы молекулярных сит, как указано выше. Адсорбент предпочтительно распределяют в, по крайней мере, два слоя, работающих параллельно (не показаны) таким образом, что один слой работает в режиме адсорбции в то время как израсходованный абсорбент в другом слое регенерируют. Из адсорбента 6 получают выходящий поток 7, который значительно обеднен двуокисью углерода. Диметиловый эфир. метанол и воду, содержащиеся в выходящем потоке 7. разделяют в дистилляционной колонне 8 с применением обычных средств на верхний продукт 9, содержащий в основном диметиловый эфир, и обедненный двуокисью углерода синтез-газ. Из нижней части колонны 8 выводят жидкий нижний продукт 10, содержащий метанол и воду. Метанол в нижнем продукте 10 может быть рециркулирован в реактор 2 синтеза ДМЭ, или он может быть подвергнут превращению в диметиловый эфир в отдельном реакторе согласно указанной выше реакции (2), и таким образом полученный диметиловый эфир рециркулирует (не показано) в абсорбционную установку 4. Конечный продукт диметилового эфира 11 получают конденсацией верхнего продукта 9 в конденсаторе 14 и фазовым разделением конденсированного эфира 11 и оставшегося синтез-газа 12. Синтез-газ 12, обедненный двуокисью углерода, преимущественно может быть рециркулирован (не показано) в реактор окисления 2.

Пример

Эффект применения способа, описанного выше и показанного на Фиг.1, суммирован в таблицах 1-3 ниже.

Смесь продукта 3, охлажденная до температуры 130°С, имеет состав, показанный в таблице 1.

Таблица 1
Компонент Нм3/ч объемн. %
Н2 37361 17,53
Н2O 1255 0,59
N2 19182 9,00
СО 35582 16,69
СO2 69187 32,46
Метанол 3173 1,49
ДМЭ 47386 22,23

После обработки промывкой на основе карбоната калия в абсорбционной установке 4 выходящий поток 5 имеет температуру 71°С при введении в твердый адсорбент 6. Состав выходящего потока 5 показан в таблице 2 и выходящего потока 7 из адсорбента 6 - в таблице 3.

Таблица 2
Компонент Нм3/ч объемн. %
Н2 37361 26,17
Н2O 165 0,12
N2 19182 13,43
СО 35582 24,92
СO2 71 0,05
Метанол 3173 2,22
ДМЭ 47386 33,19
Таблица 3
Компонент Нм3/ч % объемн.
Н2 37361 26,18
h3O 165 0,12
N2 19182 13,43
СО 35582 24,92
СO2 0,14 0,0001
Метанол 3173 2,22
ДМЭ 47386 33,21

1. Способ получения продукта диметилового эфира каталитической конверсией синтез-газа в диметиловый эфир, предусматривающий контакт потока синтез-газа, содержащего двуокись углерода, на стадии синтеза диметилового эфира в одном или более реакторах и с одним или более катализаторами, активными в образовании метанола и дегидратации метанола до диметилового эфира, с получением смеси продукта, содержащей компоненты диметиловый эфир, метанол, двуокись углерода и непрореагировавший синтез-газ, промывание смеси продукта, содержащей двуокись углерода и непрореагировавший синтез-газ, в газопромывочной зоне жидким растворителем, обогащенным карбонатом калия или амином, тем самым селективно абсорбируя двуокись углерода в жидкий растворитель, подвергание таким образом обработанной смеси продукта стадии дистилляции для отделения метанола и воды от потока диметилового эфира и непрореагировавшего синтез-газа с пониженным содержанием двуокиси углерода и отделение непрореагировавшего синтез-газа от продукта диметилового эфира.

2. Способ по п.1, предусматривающий дополнительную стадию обработки смеси продукта, выходящей из газопромывочной зоны, твердым адсорбентом двуокиси углерода перед стадией дистилляции для дополнительного удаления двуокиси углерода из смеси.

3. Способ по п.2, где твердый адсорбент выбирают из группы, состоящей из цеолитов, молекулярных сит, активированных оксидов алюминия.

4. Способ по п.1 или 2, где поток синтез-газа, отделенный от продукта диметилового эфира, с пониженным содержанием двуокиси углерода рециркулируют в синтез диметилового эфира.

5. Способ по п.1 или 2, где метанол и воду, отделенные от диметилового эфира на стадии дистилляции, подают на вторую стадию синтеза диметилового эфира для дальнейшей конверсии метанола в диметиловый эфир.

6. Способ по п.5, где поток продукта диметилового эфира со второй стадии синтеза диметилового эфира рециркулируют на стадию дистилляции для отделения воды и метанола от диметилового эфира.

www.findpatent.ru

Диметиловый эфир свойства - Справочник химика 21

    Сравните физические свойства этилового спирта и диметилового эфира. Чем обусловлена хорошая растворимость в воде первых членов гомологического ряда спиртов  [c.49]

    Таким образом, существуют два вещества — этиловый спирт и диметиловый эфир — с одинаковой молекулярной формулой СгНвО, но с различными свойствами. Как же объяснить существование этих двух соединений Ответ строение их молекул различно. Этиловому спирту можно приписать формулу I, а диметиловому эфиру — формулу П. Как будет показано ниже, различие в физических и химических свойствах этих двух соединений легко объяснить исходя из различного строения их молекул. [c.36]

    Многие необычные физические свойства спиртов, особенно низкомолекулярных, обусловлены наличием гидроксильной группы в молекуле. Например, простейшие члены таких рядов соединений, как алканы, алкены, алкины, алкилгалогениды и простые эфиры, имеют очень низкие температуры кипения по сравнению с простейшим спиртом — метанолом (табл. 40-1). Этанол — следующий член гомологического ряда спиртов —имеет гораздо более высокую температуру кипения (78 С), чем диметиловый эфир (—24° С), хотя брутто-формула обоих соединений одинакова СаНдО. Метанол и этанол смешиваются с водой в любых соотношениях в отличие от других соединений, представленных в табл. 10-1. [c.385]

    Физические свойства. Диметиловый эфир кипит при —23,7° С, метилэтиловый — при +10,8° С таким образом, эти низшие простые эфиры при обычных условиях являются газообразными веществами. Диэтиловый эфир — уже жидкость с темп. кип. 35,6° С. [c.127]

    Взаимосвязь строения и свойств вещества. До создания теории химического строения считалось, что свойства соединений определяются только их составом. Это во многом правильное положение не могло объяснить явление изомерии — проявление различных свойств веществами, имеющими одинаковый состав. Такие вещества получили название изомеры. Например, составу СгНбО отвечают два органических соединения — этиловый спирт (этанол) и диметиловый эфир, которые различаются по химическим и физическим свойствам. Например, этанол реагирует с натрием (при этом выделяется водород), имеет температуру кипения 78°С диметиловый эфир с натрием не реагирует, кипит ири температуре —24°С. [c.295]

    Таким образом, органические соединения с одной и той же эмпирической формулой могут иметь несколько вариантов расположения атомов в молекуле (изомеры). Различное расположение атомов приводит к изменению физических и химических свойств веществ. Изомеры могут относиться как к одинаковым классам органических соединений, так и к разным. Примером второго случая являются этиловый спирт и диметиловый эфир. [c.293]

    Это один из вариантов очистки газов физической абсорбцией. В качестве абсорбента применяют диметиловых эфир полиэтилен-гликоля [199, 249—255], основные физико-химические свойства которого приведены ниже  [c.269]

    Диэфиры этиленгликолей применяются также в качестве растворителей. Вследствие присутствия в молекуле двух эфирных атомов кислорода физические свойства диэфиров как растворителей аналогичны свойствам диоксана, но температуры кипения их выше. Диэтиловый эфир этиленгликоля aHgO Hg HjO aHs кипит при 121° (760 мм рт. ст.), диэтиловый эфир диэтиленгликоля кипит при 188° (760 мм рт. ст.), а диметиловый эфир тетраэтиленгликоля — при 276° (760 мм рт. ст.). Диэтиловый эфир этиленгликоля растворим в воде. Максимальная концентрация раствора достигает 21%. Его добавляют к воде, чтобы облегчить растворимость веществ, в ней не растворяющихся. Последние два эфира смешиваются с водой во всех отношениях. Эфир диэтиленгликоля применяют при нанесении лакокрасочных покрытий кистью. Производное тетраэтиленгликоля используют как смазку для каучуковых изделий и в качестве растворителя для хлороргани-ческих хладагентов. [c.359]

    Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле. Так, состав этилового (винного) спирта и диметилового эфира выражается одной эмпирической формулой jH O, но свойства их различны этиловый спирт — жидкость с температурой кипения 78,3°С, а диметиловый эфир — газ, сжижающийся при —23,6°С. [c.272]

    Свойства. Желтые, очень неустойчивые на воздухе кристаллы. Без разложения растворяются только в ацетонитриле. При растворении в ацетоне, тетрагидрофуране, диоксане и диметиловом эфире диэтиленгликоля идет более или менее быстрый обмен лигандов или разложение. Даже в высоком вакууме при температуре выше 30—40 °С идет разложение. [c.2129]

    В ТО время как второе (диметиловый эфир) совсем не взаимодействует с ним. Объясняется это различным влиянием атомов, непосредственно соединенных с водородом свойства атома водорода в этиловом спирте (в связи О—Н) иные, чем в диметиловом эфире (в связи С—Н). [c.55]

    Таким образом, этиловый спирт и диметиловый эфир — изомеры. Они имеют различное химическое строение при одном и том же составе и молекулярной массе. Различное химическое строение определяет и различные свойства этих соединений. Так, этиловый спирт при обычных условиях реагирует с металлическим натрием и 1 ислотами, а диметиловый эфир таких реакций не дает. [c.10]

    Часто необходимы экспериментальные данные относительно того,, каким образом атомы соединяются между собой. Это особенно существенно для органических соединений. Известны, например, два соединения, имеющие со став С НбО этиловый спирт и диметиловый эфир. Химические свойства этих двух веществ указывают на то, что одно из них — этиловый спирт — содержит один атом водорода, присоединен- [c.130]

    Видно, что изомеры действительно отличаются порядком хим 1-ческой связи атомов если в молекуле диметилового эфира оба углеродных атома непосредственно не связаны друг с другом — их разделяет кислород, то в молекуле этилового спирта имеется цепь из двух атомов углерода. Диметиловый эфир и этиловый спирт имеют неодинаковое химическое строение, поэтому различны и их свойства. [c.221]

    Рассмотрите строение молекулы диметилового эфира. Может ли это соединение проявлять кислотные, основные и нуклеофильные свойства  [c.60]

    Антиокислительные свойства фенолов зависят от их строения. Работами М. Д. Тиличеева, М. Б. Вольф и О. В. Васильевой (Плетневой), Н. М. Силищенской, И. П. Уварова и др. [67—71] установлено, что основными компонентами, обусловливающими максимальную эффективность антиокислителей фенольного типа, являются многоатомные фенолы и некоторые их диметиловые эфиры, в частности диметиловый эфир пирогаллола. Было показано, что антиокислительными свойствами в основном обладают фенолы с гидроксильными группами, расположенными рядом (о-диоксибензолы, пирокатехин, пирогаллол и их гомологи). Продукты, богатые фенольными соединениями различного строения, получают при термической переработке твердых горючих ископаемых. [c.234]

    Неодинаковое строение молекул приводит к различным свойствам именно различие в свойствах свидетельствует о том, что имеются различные соединения. В некоторых случаях различие в строении, а следовательно, и в свойствах настолько велико, что изомеры относятся к разным классам органических соединений, как, например, этиловый спирт и диметиловый эфир. В других случаях различие строения настолько незначительно, что [c.36]

    Свойства. Бесцветные кристаллы, растворимые в тетрагидрофуране не растворяются в диметиловом эфире этиленгликоля. В присутствии влаги соединение разлагается тотчас до МпН(С0)5 и СОг. При нагревании до 130— 140°С также происходит разложение. ИК (нуйол) 2101 (с.) [v( O)] см".  [c.1939]

    ФТАЛЕВЫЕ КИСЛОТЫ (бензолди-карбоновые кислоты) СвН4(СООН)2. Известны ортофталевая, изофталевая и тере-фталевая кислоты, о-Фталевая кислота — простейший представитель двухосновных ароматических кислот получают ее окислени-и другими способами. о-Ф. к. кристаллизуется из воды в виде блестящих листочков, т. пл. 200 С, малорастворима в воде. о-Ф. к. содержится в зелени и семенной коробочке мака. При нагревании выше 200 С теряет воду и превращается во фталевый ангидрид. Эфиры о-Ф. к.— маслянистые высококипящие жидкости, применяют в качестве пластификаторов, манометрических жидкостей, в газожидкостной хроматографии и в качестве рабочей жидкости в вакуумных диффузионных насосах. Диметиловый эфир обладает реппелент-ными свойствами и применяется для отпугивания насекомых. В химической промышленности применяют не о-Ф. к., а ее ангидрид (см. Фталевый ангидрид). [c.270]

    Среди органических соединений особенно распространено я в -леиие изомерии (с1р. 460). Имеется множество соединений углерода, обладающих одинаковым качественным и количественным составом и одинаковой молекулярной массой, но совершенно различными физическими, а зачастую и химическими свойствами. Например, состав СгНеО и, соота-гтственно, молекулярную массу 46,07 нмеют два различных изомерных органических вещества этиловый сиарт — жидкость, кипящая при 78,4 °С, смешивающаяся с водой в любых соотношениях, и диметиловый эфир — газ, почти не растворимый в воде и существенно отличающийся от этилового спирта по химическим свойствам (см. также стр. 461). [c.451]

    Характеристика кислот в виде сложных полных эфиров представляет интерес, так как свойства их резко различны. Диметиловые эфиры готовятся насыщением сухим хлористым водородом раствора кислоты в. метиловом спирте. Насъпценный раствор затем нагревается в запаянной трубке 6 час. при 100°. [c.145]

    Определенное внимание в отчете привлек вопрос, связанный с историей данного резервуара. Между прочим упоминался тот факт, что она пострадала в результате аварии, происшедшей за год до этого во Франции, в ходе которой вышли из строя вентили цистерны. Никаких расследований аварии не проводилось. Впоследствии цистерна принадлежала предприятию, выпускающему аммиак, и в надписи на цистерне по-прежнему значилось "Наибольшая масса при заполнении жидким аммиаком - 26,8 т" [Stahl,1949]. Данная информация свидетельствует о том, что цистерна могла использоваться для транспортировки не только диметилового эфира, но и других веществ, каким, например, был безводный аммиак. В настоящее время стало известно, что это вещество способно воздействовать на хрупкостные свойства некоторых сталей [ IA, 1975]. [c.320]

    Позднее ВНИИгазом были проведены исследования по изучению физико-химических свойств смесей аминов (ДЭА, МДЭА, ДЭА + МДЭА) с диметиловыми эфирами полиэтилен-гликолей в различных соотношениях, на основании чего было рекомендовано использование нового отечественного абсорбента Экосорб , по свойствам идентичного дорогостоящему импортному Укарсолу . Экосорб разработан на основе компонентов, выпускаемых отечественной промышленностью (АО Синтез г. Дзержинск и ПО Азот г. Кемерово) и отличается значительно более низкой стоимостью. [c.59]

    По своему строению и свойствам полиэфир, составляющий основу этого лака (ТЛ-1, по новой номенклатуре ПЭ-939), аналогичен полиэфиру, полученному поликонденсацией диметилового эфира терефталевой кислоты с глицерином и этиленгликолем. Сущность способа получения лака ПЭ-939 заключается в воздействии глицерина на расплавленную смолу лавсан при 265—270° С. Реакция в конечном счете сводится к замещению в цепи полимера группы СН2СН2 другой группой, содержащей гидроксил при этом образуется полимер, аналогичный полученному из диметилтерефталата и выделяется этиленгликоль  [c.225]

    Дпя заправки автомобилей в настоящее время в основном применяютс неэтилированные бензины с улучшенными экологическими свойствами ( низким содержанием серы, аренов и бензола), отвечающие требованияк ГОСТ Р 51105-97, а также подокне дизельиые топлива по ТУ 38.401-58 170-96. Перспективны в качестве дизельных топлив жидкие синтетически углеводороды и диметиловый эфир с хорошей самовоспламеняемостью (це тановое число до 50-60), получаемые из природного газа. [c.177]

    Природные хлорины с 6-лактонным циклом обладает всеми характерными свойствами циклических сложных эфиров. Было изучено взаимодействие лакгона диметилового эфира хлорина рб с аммиаком, гидразином и этаноламином. Оказалось, что при воздействии всех оснований происходит раскрытие лактоиного кольца с образованием спирта по положению 18. [c.38]

    Реакцию проводят в круглодоиной колбе из термостойкого стекла, соеди-,яенной последовательно промывной склянкой с 30%-ным раствором NaOH для удаления примесей с кислотными свойствами и с двумя осушительными колонками, наполненными соответствеино кусочками твердого едкого натра и пятиокисью фосфора. После высушиваиия газ поступает в конденсатор, охлаждаемый до —78 С где удаляются примеси диметилового эфира, метилового спирта и др., и затем газ конденсируется в коидеисаторе-приемнике, охлаждаемом жидким воздухом. [c.385]

    Процесс Селексол [49—581. В качестве абсорбента используется диметиловый эфир полиэтиленгликоля (ДМЭПЭГ), который имеет следущие физико-химические свойства  [c.150]

    Радикал нового типа, обладающий весьма интересными свойствами, ди-трет-бутилнитроксил [(СНз)дС]2К—О образуется при взаимодействии /пре/и-нитробутана с металлическим натрием в диметиловом эфире этиленгликоля при комнатной температуре (Гофман, Гендерсон, 1961)  [c.245]

    Диметиловый эфир фосфаминовой кислоты является исходным продуктом для получения некоторых фосфорорганических соединений, обладающих инсектицидными свойствами. [c.137]

    Диметиловый эфир — газ с т. кип. —24 °С. Это соединение резко отличается от этилового спирта не только по своим физическим, но и по химическим свойствам. Оно не реагирует с металлическим натрием. Как и этиловый спирт, диметиловый эфир реагирует с иодистоводородной кислотой, но при этом образуется соединение, имеющее формулу h4I. Анализ диме-тилового эфира показывает, что углерод, водород и кислород содержатся в нем в том же соотношении, что и в этиловом спирте, а именно 2С 6Н 10. Его молекулярный вес такой же, как и этилового спирта, н равен 46. Таким образом, диметиловый эфир имеет ту же самую молекулярную формулу QHeO. [c.36]

    Трифенилфосфол поглощает в УФ-области при значительно больщей длине волны, чем 1,2,5-трифенилпиррол, что указывает на меньшую ароматичность фосфола. Химические свойства также подтверждают, что в фосфоле (275) гетероцикл обладает слабыми ароматическими свойствами или вообще их лишен, но в спектре ЯМР этого соединения можно найти подтверждение ароматичности. В этом спектре сигналы всех протонов имеют вид сложного мультиплета 2,35—2,9т, но в спектрах оксида, у которого пара электронов фосфора не принадлежит кольцу, этот мультиплет уширен, и один из сигналов, имеющий вид дублета и соответствующий, как предполагают, двум протонам гетероцикла, проявляется отдельно от основного мультиплета в области 3,15т. Соединение (275) не обладает свойствами, характерными для диена оно не реагирует с малеиновым ангидридом или акрилонитрилом в бензоле при 80 °С в отличие от его оксида, дающего в этих условиях нормальные аддукты. Однако при 150—200 °С и фосфол, и его оксид вступают в реакцию Дильса—Альдера с малеиновым ангидридом, которая сопровождается элиминированием мостика PPh и ароматизацией, приводящей к 3,6-дифенплфталевому ангидриду. 1,2,5-Трифенил фосфол (275) взаимодействует с диметиловым эфиром ацетиленди- [c.382]

chem21.info


Смотрите также