Что такое транскрипция в биологии? Это этап синтеза белка. Что такое эфиры в биологии


Что такое трансляция в биологии? Основные этапы трансляции

Что такое трансляция в биологии? После транскрипции она является второй частью центральной догмы молекулярной биологии, которая описывает использование генетического кода для изготовления цепей аминокислот.

Трансляция и молекулы РНК

Три основных молекулярных класса рибонуклеиновой кислоты (РНК) принимают участие в экспрессии генов, которые закодированы в дезоксерибонуклеиновой кислоте (ДНК) клетки. Это:

  • информационная РНК (иРНК)
  • переносная РНК (тРНК)
  • рибосомальная РНК (рРНК)

При трансляции особую роль играют первых два вида РНК.

Принцип трансляции

В биологии трансляция представляет собой сложный процесс, во время которого из информации, содержащейся в молекуле РНК (иРНК), синтезируется белок. Последовательность иРНК считывается с помощью генетического кода. Сама трансляция происходит в структуре, называемой рибосомой, которая является своеобразной фабрикой для синтеза белков. Эта клеточная органелла имеет маленькие и большие субъединицы и представляет собой сложную молекулу, состоящую из нескольких рибосомных РНК-молекул, а также ряда белков.

Нулевой фазой считается активация, когда нужная аминокислота ковалентно связывается с подходящей РНК (тРНК) и становится «заряженной». Хотя это технически не является этапом трансляции, этот шаг так же необходим, как и все последующие. Итак, рассмотрим этапы трансляции в биологии более подробно:

  1. Инициация. На данном этапе мРНК прикрепляется к тРНК, который присоединен к указанной аминокислоте. Все вместе, они объединяются в рибосоме.
  2. Элонгация. Это относительное удлинение путем добавления аминокислот, сопровождающееся образованием пептидных связей. В конечном счете создается полипептид. Процесс сложения продолжается снова и снова до тех пор, пока цепь не достигнет своего предела, а это около ста аминокислот.
  3. Прекращение. Когда сигнал окончания биосинтеза получен, полипептид отделяется от рибосомы. Когда высвобождается новый белок, весь комплекс трансляции распадается.

Сложный и точный процесс

Что такое трансляция в биологии? Это очень сложный и одновременно удивительно слаженный и точный процесс, который включает в себя много компонентов. Все движения, реакции и другие манипуляции прекрасно скоординированы. Превращение генов в белки, по существу, проходит в два этапа: транскрипция и трансляция. Несмотря на то что во время первого никакого синтеза белка не происходит, без него не представляется возможным второй.

Трансляция является завершающим этапом реализации информации на генном уровне. Этот процесс может проходить только в живых клетках и он гораздо сложнее, чем предыдущие матричные синтезы репликация и транскрипция. В трансляции принимают участие все разновидности РНК, двадцать видов аминокислот, разнообразные ферменты и так далее. Главенствующим центром всех событий выступает такая клеточная органелла, как рибосома.

Удивительным фактом является слаженность работы всех взаимодействующих элементов белкового биосинтеза: специфика многих ферментов направлена на взаимное узнавание на молекулярном уровне. Даже случайно обнаруженные сбои и ошибки мгновенно ликвидируются теми ферментами, которые, в принципе, за них и не отвечают.

Благотворное сотрудничество

По мере того как клеточные рибосомы продвигаются вдоль информационной РНК, постепенно освобождается ее стартовый участок, к которому присоединяется уже другая рибосома. И количество таких органелл, работающих одновременно на одной молекуле, может достигать нескольких десятков. Таким образом, всего одна матричная основа используется, чтобы синтезировать целый ряд молекулярных дуплекатов полипептида. такое благотворное сотрудничество получило название полирибосомой (полисомой).

В зависимости от того, какие белки необходимы определенной клетке или организму в целом, происходит многоступенчатый полипептидный биосинтез, контролируемый генами и некоторыми регуляционными механизмами, которые слаженно и последовательно действуют на определенных стадиях высвобождения генетической информации, в том числе и во время трансляции.

autogear.ru

ТРАНСЛЯЦИЯ (в биологии) - это... Что такое ТРАНСЛЯЦИЯ (в биологии)?

 ТРАНСЛЯЦИЯ (в биологии) ТРАНСЛЯЦИЯ (в биологии)

ТРАНСЛЯ́ЦИЯ, в биологии — биосинтез белков в живой клетке на рибосомах; 2-й этап реализации генетической информации, в процессе которого последовательность нуклеотидов информационной, или матричной, РНК «переводится» в аминокислотную последовательность синтезирующегося белка. Протекает с участием транспортных РНК и соответствующих ферментов.

Энциклопедический словарь. 2009.

  • ТРАНСКРИПЦИЯ (в фонетике)
  • ТРАНСПОЗИЦИЯ (в комбинаторике)

Смотреть что такое "ТРАНСЛЯЦИЯ (в биологии)" в других словарях:

  • Трансляция (в биологии) — Трансляция в биологии, процесс биосинтеза полипептидных цепей белков в живых клетках. Заключается в «считывании» генетической информации, «записанной» в виде последовательности нуклеотидов в молекулах информационных (матричных) рибонуклеиновых… …   Большая советская энциклопедия

  • ТРАНСЛЯЦИЯ — в биологии биосинтез белков в живой клетке на рибосомах; 2 й этап реализации генетической информации, в процессе которого последовательность нуклеотидов информационной, или матричной, РНК переводится в аминокислотную последовательность… …   Большой Энциклопедический словарь

  • Трансляция — I Трансляция (от лат. translatio передача)         1) в радиовещании и телевидении проведение внестудийных передач (непосредственно с мест событий: из театров, концертных залов, со стадионов и т.п.), а также включение в местную передачу программ …   Большая советская энциклопедия

  • трансляция — (лат. translatio перенос, передача) в биологии второй этап реализации генетической информации в клетке, в процессе которого синтезируется белок; последовательность аминокислот белка определяется последовательностью нуклеотидов в информационной… …   Большой медицинский словарь

  • Трансляция (Translation) — (в биологии клетки) процесс синтеза белков в клетке, происходящий на рибосомах. Информация, определяющая последовательность аминокислот в белке, поступает к рибосомам от информационных (матричных) РНК, а непосредственное размещение аминокислот в… …   Медицинские термины

  • Трансляция — (от лат. translatio передача) (в биологии) синтез белков путем «сбора» аминокислот в последовательности, записанной в генетическом коде на иРНК. Доставка аминокислот осуществляется транспортными РНК (тРНК) …   Начала современного естествознания

  • ТРАНСЛЯЦИЯ — (translation) (в биологии клетки) процесс синтеза белков в клетке, происходящий на рибосомах. Информация, определяющая последовательность аминокислот в белке, поступает к рибосомам от информационных (матричных) РНК, а непосредственное размещение… …   Толковый словарь по медицине

  • Центральная догма молекулярной биологии — Центральная догма молекулярной биологии  обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом… …   Википедия

  • Центральная догма биологии — Центральная догма молекулярной биологии  обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком… …   Википедия

  • Транскрипция (в биологии) — Транскрипция в биологии, осуществляющийся в живых клетках биосинтез рибонуклеиновой кислоты (РНК) на матрице ‒ дезоксирибонуклеиновой кислоте (ДНК). Т. ‒ один из фундаментальных биологических процессов, первый этап реализации генетической… …   Большая советская энциклопедия

Книги

  • Основы биохимии Ленинджера. В 3-х томах. Том 3. Пути передачи информации, Нельсон Дэвид, Кокс Майкл. В учебном издании, написанном американскими учеными, которые получили признание как талантливые преподаватели университетского уровня, рассмотрены современные концепции биохимии в… Подробнее  Купить за 2916 руб
  • Основы биохимии Ленинджера. Учебное пособие. В 3-х томах. Том 3: Пути передачи информации, Нельсон Дэвид. В учебном издании, написанном американскими учеными, которые получили признание как талантливые преподаватели университетского уровня, рассмотрены современные концепции биохимии в… Подробнее  Купить за 2669 грн (только Украина)
  • Основы биохимии Ленинджера. В трех томах. Том 3. Пути передачи информации, Нельсон Д., Кокс М.. В учебном издании, написанном американскими учеными, которые получили признание как талантливые преподаватели университетского уровня, рассмотрены современные концепции биохимии в… Подробнее  Купить за 2247 руб
Другие книги по запросу «ТРАНСЛЯЦИЯ (в биологии)» >>

dic.academic.ru

что такое Трансляция в биологии

Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих аминокислот и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК рибосома распознает кодон за кодоном и синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.

Для узнавания аминокислот в клетке имеются специальные «адаптеры» , молекулы транспортной РНК (тРНК) . Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон) , комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энегро-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтеназ, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только аминокислота глицин) .

Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.

Процесс трансляции разделяют на инициацию — узнавание рибосомой стартового кодона и начало синтеза, элонгацию — собственно синтез белка и терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

[править] Рамка считыванияПоскольку каждый кодон содержит три нуклеотида, один и тот же генетический текст можно прочитать тремя разными способами (начиная с первого, второго и третьего нуклеотидов) , то есть в трех разных рамках считывания. За некоторыми интересными исключениями, значимой является информация закодированная только в одной рамке считывания. По этой причине крайне важным для синтеза белка рибосомой является её правильное позиционирование на стартовом AUG-кодоне — инициация трансляции.

[править] Инициация трансляцииСинтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.

Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, сокращённо IF; эукариотические инициаторные факторы обозначают eIF, от англ. eukaryotes).

Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на на любых участках мРНК.

У эукариот существуют два механизма нахождения рибосомой стартового AUG. Наиболее распространён, так называемый сканирующий механизм, при котором рибосома, двигаясь вдоль молекулы мРНК от её 5'-конца «сканирует» один кодон за другим, пока не наткнётся на инициаторный AUG. Для привлечения рибосомы к 5'-концу мРНК требуется специальная структура, кэп — 7-метилгуанин, прикреплённый к 5'-концевому нуклеотиду мРНК.

otvet.mail.ru

Трансляция: общие сведения

Трансляция: общие сведения

Трансляция (translation): синтез белка с матрицы мРНК (матричной РНК). (В настоящее время чаще используется термин информационная РНК (иРНК). Процесс, посредством которого генетическая информация с матричной РНК переводится в белок. 

иРНК, несущая сведения о первичной структуре белков, синтезируется в ядре клетки. Пройдя через поры ядерной оболочки, иРНК на правляется к рибосомам, где осуществляется расшифровка генетической информации - перевод ее с "языка" нуклеотидов на "язык" аминокислот. Синтез полипептидных цепей белков по матрице иРНК, выполняемый рибосомами, называется трансляцией (лат. translatio - перевод).

Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными ( тРНК ). Эти небольшие молекулы, состоящие из 70-90 нуклеотидов, способны сворачиваться таким образом, что образуют структуры, напоминающие по форме клеверный лист ( рис. 47 ). В клетке имеется столько же разных тРНК, сколько кодонов, шифрующих аминокислоты. На вершине "листа" каждой тРНК имеется последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в иРНК, - антикодон. Специальный фермент - кодаза опознает тРНК и присоединяет к "черешку листа" аминокислоту - не какую угодно, а только ту, которая кодируется триплетом, комплементарным антикодону. На образование ковалентной связи между тРНК и своей аминокислотой затрачивается энергия одной молекулы АТФ. Для того чтобы аминокислота включилась в полипептидную цепь, она должна оторваться от тРНК. Это становится возможным, когда тРНК поступает на рибосому и антикодон узнает свой кодон иРНК. Ha рибосоме имеется два участка для связывания двух молекул тРНК ( рис. 48 ). В один из этих участков, называемый акцепторным , поступает тРНК с аминокислотой и присоединяется к своему кодону ( рис. 48, I ). Эта аминокислота присоединяет к себе (акцептирует) растущую цепь белка ( рис. 48, II ), между ними образуется пептидная связь. тРНК, к которой теперь присоединен растущий белок, перемещается вместе с кодоном информационной РНК в донорный участок рибосомы . В освободившийся акцепторный участок приходит новая тРНК, связанная с аминокислотой, которая шифруется очередным кодоном ( рис. 48, III ). Из донорного участка сюда вновь переносится оторвавшаяся полипептидная цепь и удлиняется еще на одно звено. Аминокислоты в растущей цепи соединены в той последовательности, в которой расположены шифрующие их кодоны в иРНК.

Когда на рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА), являющихся знаками препинания между генами, ни одна тРНК не может занять место в акцепторном участке. Дело в том, что не существует антикодонов, комплементарных нуклеотидам "знаков препинания". Оторвавшейся в донорном участке полипептидной цепи не к чему присоединиться в акцепторном участке, и она покидает рибосому. Синтез белка завершен.

А начинался он с того, что кодон АУГ , расположенный на первом месте в копии с каждого гена, занимает на рибосоме такую позицию, что с ним взаимодействует антикодон особой тРНК, соединенной с формилметионином. Эта измененная форма аминокислоты метионина сразу попадает в донорный участок и выполняет роль заглавной буквы во фразе - с нее в бактериальной клетке начинается синтез любой полипептидной цепи. В том случае, когда триплет АУГ стоит не на первом месте, а внутри копии с гена, он кодирует аминокислоту метионин. После завершения синтеза полипептидной цепи формилметионин отщепляется от нее и в готовом белке отсутствует.

Для увеличения производства белков информационная РНК часто одновременно проходит не по одной, а по нескольким рибосомам. Такую структуру, объединенную одной молекулой иРНК, называют полисомой . На каждой рибосоме в этом, похожем на нитку бус конвейере синтезируются одинаковые белки ( рис. 49 ). Аминокислоты бесперебойно поставляются к рибосомам с помощью транспортных РНК. Отдав аминокислоту, тРНК покидает рибосому и с помощью кодазы соединяется с такой же аминокислотой. Высокая слаженность всех "служб комбината" по производству белков позволяет в течение нескольких секунд синтезировать полипептидные цепи, состоящие из сотен аминокислот. (См. Регуляция транскрипции и трансляции).

 Молекулярные процессы, лежащие в основе синтеза белка, крайне сложны ( Kornberg R.D. et al, 1981 ; McGhee J.D. et al, 1980 ). В синтезе белка участвует три таких класса молекул РНК, как  мРНК , тРНК и рРНК. Началом синтеза белка принято считать процесс транскрипции ДНК , в результате которого в ядре должна образоваться соответствующая информационная РНК, которая затем должна перейти в цитоплазму клетки.

Процесс трансляции начинается с присоединения малой рибосомной субчастицы к молекуле мРНК. Особая инициаторная тРНК связывает малую рибосомную субчастицу со специальным старт- кодоном на мРНК . Присоединение большой субчастицы завершает сборку рибосомы .

Далее следует фаза элонгации . Каждая очередная аминокислота (находящаяся в комплексе с tРНК) присоединяется к карбоксильному концу растущего полипептида с помощью циклического процесса, состоящего из трех последовательных этапов: связывания аминоацил-тРНК, образования пептидной связи и транслокации рибосомы. Рибосома перемещается вдоль молекулы мРНК в направлении 5'-> 3' от одного кодона к другому до тех пор, пока не будет достигнут какой-либо из трех стоп-кодонов . К этому стоп-кодону присоединяется затем фактор освобождения , останавливающий трансляцию и вызывающий отделение завершенного полипептида от рибосомы. Энергия для биосинтеза белка обеспечивается гидролизом GTP .

Большинство данных о механизмах биосинтеза белка у эукариот было получено с использованием бесклеточных белоксинтезирующих систем . Важные результаты о механизмах трансляции у эукариот были получены с использованием стабильно трансформированных клеток животных и растений, выращиваемых в культуре. Установлено, что у растений и животных в основном функционируют одни и те же механизмы трансляции.

Клетки животных, кроме основной системы трансляции, локализованной в цитоплазме, имеют дополнительную систему трансляции митохондрий, которая по ряду свойств приближается к бактериальной. Клетки растений обладают дополнительной системой биосинтеза белка, функционирующей в хлоропластах.

Ссылки:

medbiol.ru

Что такое транскрипция в биологии? Это этап синтеза белка

Транскрипция в биологии – это многоступенчатый процесс считывания информации с ДНК, который является составляющей биосинтеза белка в клетке. Нуклеиновая кислота является носителем генетической информации в организме, поэтому важно правильно ее расшифровать и передать другим клеточным структурам для дальнейшей сборки пептидов.

Определение «транскрипция в биологии»

Синтез белка является основным жизненно важным процессом в любой клетке организма. Без создания молекул пептида невозможно поддержание нормальной жизнедеятельности, т. к эти органические соединения участвуют во всех процессах метаболизма, являются структурными компонентами многих тканей и органов, играют сигнальную и регулирующую и защитную роли в организме.

Процесс, с которого начинается биосинтез белка, и есть транскрипция. Биология кратко разделяет его на три этапа:

  1. Инициация.
  2. Элонгация (нарастание цепи РНК).
  3. Терминация.

Транскрипция в биологии – это целый каскад пошаговых реакций, в результате которых на матрице ДНК синтезируются молекулы РНК. Причем таким образом формируются не только информационные рибонуклеиновые кислоты, но также транспортные, рибосомальные, малые ядерные и другие.

Как и любой биохимический процесс, транскрипция зависит от множества факторов. Прежде всего, это ферменты, которые отличаются у прокариот и эукариот. Эти специализированные белки помогают инициировать и проводить реакции транскрипции безошибочно, что важно для качественного получения белка на выходе.

Транскрипция прокариот

Так как транкрипция в биологии – это синтез РНК на матрице ДНК, то в этом процессе главным ферментом является ДНК-зависимая РНК-полимераза. У бактерий существует только один вид таких полимераз для всех молекул рибонуклеиновой кислоты.

РНК-полимераза по принципу комплиментарности достраивает цепь РНК, используя матричную цепь ДНК. В составе этого фермента есть две β-субъединицы, одна α-субъединица и одна σ-субъединица. Первые две составляющие выполняют функцию образования тела фермента, а остальные две отвечают за удержание фермента на молекуле ДНК и узнавание промотерной части дезоксирибонуклеиновой кислоты соответственно.

Кстати, сигма-фактор служит одним из признаков, по которым распознается тот или иной ген. Например, латинская буква σ с индексом N означает то, что эта РНК-полимераза узнает гены, которые включаются при недостатке азота в окружающей среде.

Траскрипция у эукариот

В отличие от бактерий, у животных и растений транскрипция происходит несколько сложнее. Во-первых, В каждой клетке находятся не один, а целых три вида разных РНК-полимераз. Среди них:

  1. РНК-полимераза I. Она отвечает за транскрипцию генов рибосомальных РНК (исключение составляет 5S РНК субъединицв рибосомы).
  2. РНК-полимераза II. Ее задача состоит в синтезе нормальных информационных (матричных) рибонуклеиновых кислот, которые в дальнейшем участвуют в трансляции.
  3. РНК-полимераза III. Функция этого вида полимераз заключается в том, чтобы синтезировать транспортные рибонуклеиновые кислоты, а также 5S-рибосомальную РНК.

Во-вторых, для узнавания промотора у эукариотических клеток недостачно иметь только полимеразу. В инициации транскрипции также участвуют специальные пептиды, которые называются TF-белками. Только с их помощью РНК-полимераза может сесть на ДНК и начать синтез молекулы рибонуклеиновой кислоты.

Значение транскрипции

Молекула РНК, которая образуется на матрице ДНК, впоследствии присоединяется к рибосомам, где с нее считывается информация и синтезируется белок. Процесс образования пептида очень важен для клетки, т.к. без этих органических соединений невозможна нормальная жизнедеятельность: они в первую очередь являются основой для важнейших ферментов всех биохимических реакций.

Транскрипция в биологии – это еще и источник рРНК, которые входят в состав рибосом, а также тРНК, которые участвуют в переносе аминокислот во время трансляции к этим немембранным структурам. Также могут синтезироваться мяРНК (малые ядерные), функция которых заключается в сплайсинге всех молекул РНК.

Заключение

Трансляция и транскрипция в биологии играют исключительно важную роль в синтезе белковых молекул. Эти процессы являются основной составляющей центральной догмы молекулярной биологии, которая гласит о том, что на матрице ДНК синтезируется РНК, а РНК, в свою очередь, является основой для начала формирования молекул белка.

Без транскрипции невозможно было бы считать информацию, которая закодирована в триплетах дезоксирибонуклеиновой кислоты. Это еще раз доказывает важность процесса на биологическом уровне. Любая клетка, будь она прокариотическая или эукариотическая, должна постоянно синтезировать новые и новые молекулы белка, которые нужны в данный момент для поддержания жизнедеятельности. Поэтому транскрипция в биологии – это основной этап в работе каждой отдельной клетки организма.

fb.ru

Трансляция (биология) | Virtual Laboratory Wiki

Трансляцией называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК). Трансляция является финальной стадией реализации генетической информации.

    Механизм трансляции Править

    Файл:Translation overall scheme.jpg

    Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих аминокислот и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК рибосома распознает кодон за кодоном и синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.

    Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энегро-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон ACC, а к этой тРНК будет присоединяться только аминокислота глицин).

    Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.

    Процесс трансляции разделяют на

    • инициацию — узнавание рибосомой стартового кодона и начало синтеза.
    • элонгацию — собственно синтез белка.
    • терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

    Рамка считывания Править

    Поскольку каждый кодон содержит три нуклеотида, один и тот же генетический текст можно прочитать тремя разными способами (начиная с первого, второго и третьего нуклеотидов), то есть в трех разных рамках считывания. За некоторыми интересными исключениями, значимой является информация закодированная только в одной рамке считывания. По этой причине крайне важным для синтеза белка рибосомой является её правильное позиционирование на стартовом AUG-кодоне — инициация трансляции.

    Инициация трансляции Править

    Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.

    Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, сокращённо IF; эукариотические инициаторные факторы обозначают eIF, от англ. eukaryotes).

    Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на на любых участках мРНК.

    У эукариот существуют два механизма нахождения рибосомой стартового AUG. Наиболее распространён, так называемый сканирующий механизм, при котором рибосома, двигаясь вдоль молекулы мРНК от её 5'-конца «сканирует» один кодон за другим, пока не наткнётся на инициаторный AUG. Для привлечения рибосомы к 5'-концу мРНК требуется специальная структура, кэп — 7-метилгуанин, прикреплённый к 5'-концевому нуклеотиду мРНК.

    Второй механизм эукариотической инициации трансляции не требует наличия кэп-структуры и позволяет инициировать трансляцию с внутреннего участка мРНК, называется IRES-зависимым механизмом. IRES (от англ. Internal Ribosomal Entry Site, участок внутренней посадки рибосомы) — участок мРНК, обладающий выраженной вторичной стуктурой, позволяющей ему направлять рибосомы на стартовый AUG. По IRES-зависимому механизму инициируется синтез лишь на небольшой части клеточных мРНК, а также на РНК некоторых вирусов.

    Файл:Initiation translation Procaryotes.jpg
    Механизм инициации трансляции у прокариот Править

    Малая рибосомная субъединица (30S) прокариот, если она не вовлечена в данный момент в трансляцию, существует в комплексе с инициаторными факторами IF1, IF3, и, в некоторых случаях, IF2. Рассмотрим основные функции этих белков:

    • IF3, связанный с 30S-субъединицей, предотвращает ассоциацию с большой (50S) субъединицей рибосомы, тем самым сохраняя ее свободное состояние до связывания с матричной РНК. Этот белок также принимает участие в связывании мРНК и тРНК, а также IF2.
    • IF2 взаимодействует с тРНК, а также обладает способностью расщеплять ГТФ (ГуанинТриФосфат).
    • IF1 является, по-видимому, не обязательным фактором (у некоторых видов он отсутствует) повышающим сродство малой субчастицы к IF2 и IF3.

    Комплекс 30S субчастицы с инициаторными факторами способен узнавать специальные последовательности мРНК, так называемые участки связывания рибосомы (англ. RBS — ribosomt-binding site). Эти участки содержат, во-первых, инициаторный AUG, и, во-вторых, специальную последовательность Шайн-Дальгарно с которой комплементарно связывается рибосомная 16S РНК. Последовательность Шайн-Дальгарно служит для того, чтобы отличать инициаторный AUG от внутренних кодонов, кодирующих метионин. После того, как 30S-субъединица связалась с мРНК к ней привлекается инициаторная аминоацил-тРНК и IF2, если они еще не были включены в комплекс. Затем присоединяется 50S-субчастица, происходит гидролиз ГТФ и диссоциация инициаторных факторов. Собранная рибосома начинает синтезировать полипептидную цепь.

    Кэп-зависимый механизм инициации трансляции у эукариот Править

    При помощи этого механизма транслируется подавляющее число эукариотических мРНК. Белки, принимающие участие в процессах инициации трансляции у эукариот называют eIF’s (англ. eukaryotic Initiation Factors, эукариотические факторы инициации). Помимо инициаторных факторов eIF1, eIF2 и eIF3, связывающихся с малой рибосомной субъединицей (40S), и по своим функциям приблизительно аналогичным соответствующим белкам прокариот, у эукариот появляется еще две группы факторов инициации: семейство факторов, связывающих мРНК — eIF4, и семейство факторов, связывающихся с большой (60S) субъединицей рибосомы, eIF5. Перечислим эти основные инициаторные факторы:

    • eIF4A — РНК хеликаза, фермент, расплетающий вторичную структуру мРНК для того чтобы рибосома могла по ней двигаться.
    • eIF4B — привлекает фактор eIF4A к молекуле мРНК.
    • eIF4E — связывает кэп, 7-метилгуанин, расположенный на 5'-конце молекулы мРНК.
    • eIF4G — нужен для организации компонентов, принимающих участие в инициации трансляции, в единый комплекс. Содержит сайты связывания eIF4B, eIF4E, рибосомы.
    • eIF5 — нужен для привлечения большой субъединицы рибосомы.

    На первом этапе инициации трансляции малая субъединица рибосомы в комплексе с инициаторными факторами eIF4G, eIF4B, eIF4E и инициаторной тРНК присоединяется к 5'-концу мРНК за счёт способности eIF4E связывать кэп-структуру и белка eIF3 — мРНК. Затем белок eIF4B привлекает хеликазу eIF4A, и та начинает расплетать мРНК по направлению к 3'-концу, что сопровождается затратами энергии в форме молекул АТФ. За счёт работы этого белка, 40S субчастица освобождается от белков eIF4G и eIF4E, и в комплексе с оставшимися факторами инициации двигается по мРНК до инициаторного AUG-кодона, где происходит диссоциация оставшихся факторов инициации и привлечение 60S-субъединицы рибосомы при помощи eIF5, после чего начинается синтез полипептидной цепи.

    Файл:RNA-binding sites in ribosome.jpg

    В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит заряженную тРНК в А (аминоацил)-сайт рибосомы. После формирования пептидной связи, что катализируется рРНК, и переноса связанной с тРНК пептида в из Р-сайта в А-сайт второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует перемещение рибосомы на один триплет. Таким образом петидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК в Р-сайте — в Е-сайте. Цикл элонгации завершается, когда новая тРНК с антикодоном, подходящим к кодону в А-сайте доставлена EF1a (или EF-Tu).

    Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонам

    Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Трансляция (биология). Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

    ru.vlab.wikia.com

    Транскрипция в биологии - это что такое? :: SYL.ru

    С понятием транскрипции мы встречаемся, изучая иностранный язык. Она помогает нам правильно переписывать и произносить неизвестные слова. Что понимают под этим термином в естествознании? Транскрипция в биологии – это ключевой процесс в системе реакций биосинтеза белка. Именно он позволяет клетке обеспечивать себя пептидами, которые будут выполнять в ней строительную, защитную, сигнальную, транспортную и другие функции. Только переписывание информации с локуса ДНК на молекулу информационной рибонуклеиновой кислоты запускает белоксинтезирующий аппарат клетки, обеспечивающий биохимические реакции трансляции.

    В данной статье мы рассмотрим этапы транскрипции и синтеза белка, протекающие у различных организмов, а также определим значение этих процессов в молекулярной биологии. Кроме этого, мы дадим определение, что такое транскрипция. В биологии знания по интересующим нас процессам можно получить из таких ее разделов, как цитология, молекулярная биология, биохимия.

    Особенности реакций матричного синтеза

    Для тех, кто знаком с основными типами химических реакций, изучаемые в курсе общей химии, процессы матричного синтеза окажутся совершенно новыми. Причина здесь следующая: такие реакции, протекающие в живых организмах, обеспечивают копирование материнских молекул с использованием специального кода. Его открыли не сразу, лучше сказать, что сама идея существования двух разных языков для хранения наследственной информации, пробивала себе путь на протяжении двух столетий: с конца 19 и до середины 20. Чтобы лучше представить, что такое транскрипция и трансляция в биологии и почему они относятся к реакциям матричного синтеза, обратимся для аналогии к технической лексике.

    Все как в типографии

    Представьте, что нам нужно напечатать, например, сто тысяч экземпляров популярной газеты. Весь материал, который войдет в нее, собирают на материнский носитель. Этот первый образец называется матрицей. Затем на типографских станках его тиражируют – снимают копии. Аналогичные процессы протекают и в живой клетке, только матрицами в ней поочередно служат молекулы ДНК и и-РНК, а копиями – информационная РНК и молекулы белков. Давайте рассмотрим их подробнее и выясним, что транскрипцией в биологии называется реакция матричного синтеза, протекающая в клеточном ядре.

    Генетический код – ключ к тайне биосинтеза белка

    В современной молекулярной биологии уже никто не спорит о том, какое вещество является носителем наследственных свойств и хранит данные обо всех без исключения белках организма. Конечно же, это дезоксирибонуклеиновая кислота. Однако она построена из нуклеотидов, а белки, информация о составе которых в ней хранится, представлены молекулами аминокислот, не имеющими никакого химического сродства с мономерами ДНК. Иными словами, мы имеем дело с двумя разными языками. В одном из них слова – это нуклеотиды, в другом – аминокислоты. Что же выступит в роли переводчика, который осуществит перекодировку информации, полученной в результате транскрипции? Молекулярная биология считает, что эту роль выполняет генетический код.

    Уникальные свойства клеточного кода

    Вот что представляет собой код, таблица которого представлена ниже. Над его созданием трудились цитологи, генетики, биохимики. Кроме того, в разработке кода использовали знания из криптографии. Учитывая его правила, можно установить первичную структуру синтезированного белка, ведь трансляция в биологии – это процесс перевода информации о структуре пептида с языка нуклеотидов и-РНК на язык аминокислот белковой молекулы.

    Идея кодирования в живых организмах впервые была озвучена Г. А. Гамовым. Дальнейшие научные разработки привели к формулировке основных его правил. Сначала установили, что строение 20 аминокислот зашифровано в 61 триплете информационной РНК, что привело к понятию вырожденности кода. Далее выяснили состав нонснес-кодонов, выполняющих роль старта и остановки процесса биосинтеза белка. Затем появились положения о его коллинеарности и универсальности, завершившие стройную теорию генетического кода.

    Где происходит транскрипция и трансляция?

    В биологии несколько ее разделов, изучающих строение и биохимические процессы в клетке (цитология и молекулярная биология), определили локализацию реакций матричного синтеза. Так, транскрипция происходит в ядре с участием фермента РНК-полимеразы. В его кариоплазме из свободных нуклеотидов по принципу комплементарности синтезируется молекула и-РНК, списывающая информацию о строении пептида с одного структурного гена.

    Затем она через поры в ядерной оболочке выходит из клеточного ядра и оказывается в цитоплазме клетки. Здесь и-РНК должна соединиться с несколькими рибосомами, чтобы сформировать полисому – структуру, готовую встретить молекулы транспортных рибонуклеиновых кислот. Их задача – принести аминокислоты к месту еще одной реакции матричного синтеза – трансляции. Рассмотрим механизмы обеих реакций подробно.

    Особенности образования молекул и-РНК

    Транскрипция в биологии – это переписывание информации о строении пептида со структурного гена ДНК на молекулу рибонуклеиновой кислоты, которая называется информационной. Как мы уже говорили ранее, она происходит в ядре клетки. Вначале фермент ДНК-рестриктаза разрывает водородные связи, соединяющие цепи дезоксирибонуклеиновой кислоты, и ее спираль расплетается. К свободным полинуклеотидным участкам присоединяется фермент РНК-полимераза. Он активирует сборку копии – молекулы и-РНК, которая кроме информативных участков – экзонов – содержит еще и пустые последовательности нуклеотидов – интроны. Они являются балластом и требуют удаления. Этот процесс в молекулярной биологии называют процессингом или созреванием. На нем завершается транскрипция. Биология кратко объясняет это следующим образом: только потеряв ненужные мономеры, нуклеиновая кислота сможет покинуть ядро и будет готовой к дальнейшим этапам биосинтеза белка.

    Обратная транскрипция у вирусов

    Неклеточные формы жизни разительно отличаются от прокариотических и эукариотических клеток не только своим внешним и внутренним строением, но и реакциями матричного синтеза. В семидесятых годах прошлого столетия наука доказала существование ретровирусов – организмов, геном которых состоит из двух цепей РНК. Под действием фермента – ревертазы – такие вирусные частицы копируют с участков рибонуклеиновой кислоты молекулы ДНК, которые затем внедряются в кариотип клетки-хозяина. Как видим, списывание наследственной информации в этом случае идет в обратном направлении: от РНК к ДНК. Такая форма кодирования и считывания характерна, например, для патогенных агентов, вызывающих различные виды онкологических заболеваний.

    Рибосомы и их роль в клеточном метаболизме

    Реакции пластического обмена, к которым относится и биосинтез пептидов, протекают в цитоплазме клетки. Чтобы получить готовую молекулу протеина, недостаточно скопировать последовательность нуклеотидов со структурного гена и перенести ее в цитоплазму. Необходимы также структуры, которые займутся считыванием информации и обеспечат соединение аминокислот в единую цепь посредством пептидных связей. Это рибосомы, строению и функциям которых большое внимание уделяет молекулярная биология. Где происходит транскрипция, мы уже выяснили – это кариоплазма ядра. Место процессов трансляции – клеточная цитоплазма. Именно в ней расположены каналы эндоплазматической сети, на которой группами сидят белоксинтезирующие органеллы – рибосомы. Однако и их наличие еще не обеспечивает начало пластических реакций. Нужны структуры, которые доставят к полисоме молекулы-мономеры белков – аминокислоты. Их называют транспортными рибонуклеиновыми кислотами. Что они собой представляют и какова их роль в трансляции?

    Переносчики аминокислот

    Небольшие молекулы транспортных РНК в своей пространственной конфигурации имеют участок, состоящий из последовательности нуклеотидов - антикодон. Для осуществления трансляционных процессов нужно, чтобы возник инициативный комплекс. Он должен включать триплет матрицы, рибосомы и комплементарный участок транспортной молекулы. Как только такой комплекс организовался – это сигнал к началу сборки белкового полимера. Как трансляция, так и транскрипция в биологии – это процессы ассимиляции, всегда происходящие с поглощением энергии. Для их осуществления клетка готовится заранее, аккумулируя большое количество молекул аденозинтрифосфорной кислоты.

    Синтез этого энергетического вещества происходит в митохондриях – важнейших органеллах всех без исключения эукариотических клеток. Он предшествует началу реакций матричного синтеза, занимая место в пресинтетической стадии жизненного цикла клетки и после реакций репликации. Расщепление молекул АТФ сопровождает транскрипционные процессы и реакции трансляции, высвободившаяся при этом энергия используется клеткой на всех этапах биосинтеза органических веществ.

    Стадии трансляции

    В начале реакций, приводящих к образованию полипептида, 20 видов мономеров белка связываются с определенными молекулами транспортных кислот. Параллельно в клетке происходит образование полисомы: рибосомы присоединяются к матрице в месте расположения старт-кодона. Запуск биосинтеза начинается, и рибосомы передвигаются по триплетам и-РНК. К ним подходят молекулы, транспортирующие аминокислоты. Если кодон в полисоме комплементарен антикодону транспортных кислот, то аминокислота остается в рибосоме, и образующаяся полипептидная связь соединяет ее с уже находящимися там аминокислотами. Как только белоксинтезирующая органелла доходит до стоп-триплета (обычно это УАГ, УАА или УГА), трансляция прекращается. В итоге рибосома вместе с белковой частицей отделяется от и-РНК.

    Как пептид приобретает свою нативную форму

    Последним этапом трансляции является процесс перехода первичной структуры белка в третичную форму, имеющую вид глобулы. Ферменты удаляют в ней ненужные аминокислотные остатки, присоединяют моносахариды или липидны, а также дополнительно синтезируют карбоксильные и фосфатные группы. Все это происходит в полостях эндоплазматического ретикулума, куда пептид поступает после завершения биосинтеза. Далее нативная белковая молекула переходит в каналы. Они пронизывают цитоплазму и способствуют тому, чтобы пептид попал в определенный участок цитоплазмы и далее использовался для потребностей клетки.

    В данной статье мы выяснили, что трансляция и транскрипция в биологии – это основные реакции матричного синтеза, лежащие в основе сохранения и передачи наследственных задатков организма.

    www.syl.ru