Эфирная теория Ацюковского. Ацюковский теория эфира


Эфирная теория Ацюковского - это... Что такое Эфирная теория Ацюковского?

Ацюковский Владимир Акимович (р. 16 июня 1930) — российский инженер, автор ряда книг, в которых предпринята попытка восстановить представления о существовании в мировом пространстве единой среды — газоподобного эфира, обладающего всеми свойствами обычного реального вязкого сжимаемого газа, из которого состоят все материальные образования, движения которого суть силовые поля взаимодействий.

Биография

Окончил электромеханический факультет Ленинградского политехнического института (1955).

Работал в НПО «Радуга», затем — в Лётно-исследовательском институте (ЛИИ, г. Жуковский Московской области), а с 1983 года — в НИИ авиационного оборудования, в котором им была создана лаборатория «Техническое комплексирование и миниатюризация бортового оборудования».

Основным направлением деятельности В. А. Ацюковского являлись вопросы комплексирования и оптимизации бортового оборудования, развитие бортовых ЭВМ и обеспечения помехоустойчивости. По результатам проведенных исследований Ацюковским В. А. была выпущена монография и защищена кандидатская диссертация (1964).

В 1992 году защитил докторскую диссертацию на тему «Основы информационной теории построения систем связей комплексов оборудования летательных аппаратов».

Эфиродинамика

Факультативно В. А. Ацюковский разрабатывал новое направление в физике, названное им эфиродинамикой и противопоставляемое теории относительности. Хотя эфиродинамика не была признана академической наукой, начиная с 1990 г. В. А. Ацюковскому удается публиковать монографии по эфиродинамике.

Теория

Согласно данной гипотезе эфир обладает всеми свойствами обычного реального вязкого сжимаемого газа, из которого состоят все материальные образования, движения которого суть силовые поля взаимодействий. Сторонники гипотезы утверждают, что на основе этих представлений разработаны вихревые модели структур основных устойчивых микрочастиц — протона, нейтрона, электрона, позитрона, фотона, модели ядер с учетом энергий взаимодействий нуклонов, модели атомов и некоторых молекул; разработаны модели электрического и магнитного полей, вскрыта сущность электрического, магнитного, сильного и слабого ядерных взаимодействий, сущность гравитационного взаимодействия. Показан кругооборот эфира в пределах устойчивой спиральной галактики и механизм взаимодействия галактик.

Эксперименты

Проведенные экспериментальные исследования касались в основном электротехнических приложений. Полученные формульные выражения для взаимодействий контуров оказались существенно отличными от максвелловских, что дало основание для постановки экспериментов по проверке этого положения. В результате выявилось полное подтверждение полученных выражений, что дало основание для разработки методики наведения эталонных помех в линиях проводных связей на борту ЛА, опубликованной в ГОСТ 26.807-87; в дальнейшем выяснилось полное совпадение этой методики с аналогичной методикой, опубликованной позже в американском стандарте DO-160.

Проведённые исследования закона полного тока выявили существенные отклонения этого закона от максвелловского уже при токах в 0,1 А, что дает основания для введения характеристики — плотность магнитного поля в вакууме. Проведены исследования и доказано экспериментально существование продольного электрического поля, распространяющегося вдоль оси диполя с сосредоточенными параметрами.

Однако, методологическая корректность описанных экспериментов вызывает сомнения. Независимыми исследователями описанные результаты не воспроизводились. Математический аппарат, используемый Ацюковским, также крайне сомнителен и не выдерживает тривиальной проверки на внутреннюю непротиворечивость. Один из ярких примеров — деление скалярной величины на вектор.

Цель авторов гипотезы эфира

Авторы гипотезы эфира не ставят своей целью опровержение других теорий, а делает попытку построения полноценной науки в рамках исключительно классической физики. Принятием эфира как мировой среды, предполагалось объяснить эффект инвариантности скорости света относительно выбора инерциальной системы отсчёта (и, вероятно, инвариантность уравнений Максвелла) с позиции классической физики, т. е. в терминах классической Галилеевой относительности без определения пространства Минковского. Тем самым предполагалось сделать ненужной релятивистскую модель.

Библиография

  1. Емкостные дифференциальные датчики перемещения. М., Госэнергоиздат, 1960
  2. Емкостные преобразователи перемещения М., Энергия, 1966.
  3. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире. М., Энергоатомиздат, 1990; 2003, 584 c. ISBN 5-283-03229-9.
  4. Эфиродинамические гипотезы. Жуковский, изд-во «Петит», 1996.
  5. Эфирный ветер. М., Энергоатомиздат, 1993.

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Эфиродинамика. Ацюковский В.А.

№НазваниеОбложкаQR-Code1

В.А. Ацюковский

Общая Эфиродинамика. На основе представлений об эфире как о реальном вязком и сжимаемом газе дана эфиродинамическая интерпретация основных структур вещества и механизмов физических полей взаимодействий. Рассмотрены модели основных устойчивых элементарных частиц: протона, нейтрона, электрона, фотона, а также атомных ядер, атомов и некоторых молекул. Разработаны эфиродинамические основы механизмов сильного и слабого ядерных, электромагнитного и гравитационного взаимодействий. Дана эфиродинамическая интерпретация основных уравнений квантовой механики. Уточнены уравнения электромагнитного поля и гравитации. Разработана модель стационарной динамической Вселенной. Для научных работников и студентов вузов, специализирующихся в области прикладной физики.

Открыть файл

1-248.jpg1.gif2

В.А. Ацюковский

Популярная Эфиродинамика. В книге в популярной форме изложена эфиродинамическая картина мира, основанная на представлении о существовании в природе эфира - среды, заполняющей все мировое пространство и обладающей свойствами реального вязкого сжимаемого газа, являющейся строи-тельным материалом для всех без исключения вещественных образований, движения которой обеспечивают все виды физических взаимодействий и явлений. Книга рассчитана на студентов, школьников старших классов и всех, интересующихся проблемами естествознания. Книга может также служить учебным пособием для преподавателей и слушателей курса «Концепции современного естествознания.

Открыть файл

2-248.jpg2.gif3

В.А. Ацюковский

Эфиродинамическая картина мира . На основе представления об эфире как о реальном вязком сжимаемом газе дана эфиродинамическая интерпретация основных структур вещества и механизмов физических полей взаимодействий. Рассмотрены модели основных устойчивых элементарных частиц: протона, нейтрона, электрона, фотона, а также атомных ядер, атомов и некоторых молекул. Разработаны эфиродинамические основы механизмов сильного и слабого ядерных, электромагнитного и гравитационного взаимодействий. Дана эфиродинамическая интерпретация основных уравнений квантовой механики. Уточнены уравнения электромагнитного поля и гравитации. Разработана модель стационарной динамической Вселенной. Для научных работников и студентов вузов, специализирующихся в области прикладной физики.

Открыть файл

3-248.jpg3.gif4

В.А. Ацюковский

Серия книг "Начала эфиродинамического естествознания" Книга 1. Методологический кризис современной теоретической физики. В книге рассмотрены некоторые основные положения методологии современного естествознания, в первую очередь, современной теоретической физики, И дана критика их целей, методологии, основных положений и результатов. Для всех, интересующихся проблемами современного естествознания и проблемами современной теоретической физики.

Открыть файл

4-1-248.jpg4-1.gif5 В.А. Ацюковский

Серия книг "Начала эфиродинамического естествознания"

Книга 2. ч. 1. Методология эфиродинамики и свойства эфира.

ч. 2. Эфиродинамические основы строения вещества и полей .

В книге в первой части рассмотрены некоторые положения диалектического материализма как основы методологии эфиродинамики, строение и численные параметры эфира в околоземном пространстве, формы движения эфира, строение эфиродинамических вихрей и их взаимодействие с окружающим их эфиром. Во второй части рассмотрено эфиродинамическое строение нуклонов, атомных ядер, атомов и молекул. Для всех, интересующихся проблемами современного естествознания и проблемами современной теоретической физики.

Открыть файл

5-2-248.jpg5-2.gif6 В.А. Ацюковский

Серия книг "Начала эфиродинамического естествознания"

Книга 3. Эфиродинамические основы космологии и космогонии .

В книге рассмотрены некоторые основные положения современных космологии и космогонии и показана их несостоятельность в ряде аспектов, связанных с непризнанием эфира. Рассмотрены и обоснованы эфиродинамические основы космогонии и космологии, обоснована вечность существования Вселенной и разрешены космологические парадоксы. Для всех, интересующихся проблемами современного естествознания и проблемами современной теоретической физики.

Открыть файл

6-3-248.jpg6-3.gif7 В.А. Ацюковский

Серия книг "Начала эфиродинамического естествознания" Книга 4. ч. 1. Эфиродинамические основы электромагнитных явлений. ч. 2. Эфиродинамическое основы оптических явлений.

В книге в первой части рассмотрены некоторые положения эфиродинамических основ электромагнетизма и электромагнитных явлений, во второй части - эфиродинамические основы оптических явлений. Для всех, интересующихся проблемами современного естествознания и проблемами современной теоретической физики.

Открыть файл

7-4-248.jpg7-4.gif8 В.А. Ацюковский

Серия книг "Начала эфиродинамического естествознания" Книга 5.  Первые эфиродинамические эксперименты и технологии.

В книге представлены эксперименты, результаты которых подтверждают положения эфиродинамики, - физические эксперименты разных направлений, эксперименты по электродинамике, эксперименты, связанные с поисками эфирного ветра. В книге также рассмотрены проблема энергетического кризиса и представлены предложения по прямому преобразованию потенциальной энергии эфира в электрическую энергию. Для всех, интересующихся проблемами современного естествознания и проблемами современной теоретической физики.

Открыть файл

8-5-248.jpg8-5.gif9

В.А. Ацюковский

Эфирный ветер. Сборник статей. 2-е издание. Настоящий сборник статей включает в себя переводы основных работ экспериментаторов, поставивших опыты по обнаружению эфирного ветра. Комментарии к ним и предложения по развитию данного направления даны в заключительных статьях составителя сборника. Для научных работников и студентов ВУЗов, специализирующихся в области теоретической и прикладной физики.

Открыть файл

9-248.jpg9.gif10

В.А. Ацюковский

Эфиродинамические основы электромагнетизма.

На основе эфиродинамических представлений о сущности электромагнитных явлений про-изведено уточнение некоторых положений теории электромагнетизма, что позволило предсказать некоторые явления, существование которых было подтверждено экспериментами в лабораторных и натурных условиях. Для студентов физических и технических университетов и институтов, аспирантов и научных работников, а также для всех, читателей, интересующихся физической сущностью электромагнитных явлений.

Открыть файл10-248.jpg10.gif11

В.А. Ацюковский Эфиродинамические основы космологии и космогонии.

В работе изложена эфиродинамическая концепция космологии, космогонии и основных космических явлений, в основе которых ле-жит представление о существовании в природе мировой среды - газоподобного эфира, являющегося строительным материалом для всех видов материальных образований, движения которого являются основой всех видов силовых полей взаимодействий. В работе приведены эфиродинамические модели основных космических структур и явлений в рамках представлений о вечно существующей Вселенной, евклидовом пространстве и равномерно текущем времени. Для студентов физических и технических университетов и институтов, аспирантов и научных работников, а также для всех, интересующихся внутренней сущностью космических явлений.

Открыть файл11-248.jpg11.gif12

В.А. Ацюковский

Материализм и релятивизм

В книге приведен философский анализ состояния современной теоретической физики и дана критика ее целей. Методологии, основных положений и результатов. Для физиков и философов-естественников, студентов и аспирантов высших учебных заведений, а также всех, кто интересуется современными проблемами науки.

Открыть файл12-248.jpg12.gif13

В.А. Ацюковский

Философия и методология современного естествознания (цикл лекций).

В книге рассмотрены некоторые основные положения философии и методологии современного естествознания, показана ведущая роль физики и проанализировано философское положение в ведущих областях естествознания - теоретической, атомной и ядерной физике, электродинамике и космологии. Показана роль естествознания в общественном производстве и рассмотрен ряд философских положений применительно к современному состоянию и развития естествознания. Рекомендуется в качестве учебного пособия для студентов, изучающих философию науки. Для всех, интересующихся современным состоянием естествознания и путях его дальнейшего развития.

Открыть файл13-248.jpg13.gif14

В.А. Ацюковский

Философия и методология технического комплексирования.

В книге изложены некоторые положения философии и методологии организации сложных технических комплексов, принципы их структурной организации и развития. Рекомендуется в качестве учебного пособия для студентов, изучающих философию науки и техники. Для всех, интересующихся современными проблемами организации сложных технических систем и комплексов.

Открыть файл14-248.jpg14.gif15

В.А. Ацюковский

Системно - исторический метод прогноза в технике, в физике, в социологии в популярном изложении.

В книге описана методология нахождения выхода из затруднительно и даже кризисного положения, возникающего в различных областях техники, а также в естественных и общественных науках в результате отсутствия системного подхода в поисках решения проблем. На конкретных примерах показана эффективность использования системно - исторического метода к разрешению, казалось бы, тупиковых ситуаций, возникших в свое время в комплексах бортового авиационного оборудования, в теоретической физике, а также в социологии. Для всех, интересующихся методологией выхода из возникающих проблемных ситуаций.

Открыть файл15-248.jpg15.gif16

В.А. Ацюковский, В.Г. Васильев

Обнаружение и нейтрализация геопатогенных излучений Земли.

В книге приведены данные о геопатогенных явлениях на поверхности Земли, приводящих к нарушениям здоровья людей, массовым заболеваниям, а также к авариям и катастрофам. Показан физический (эфиродинамический) механизм геопатогенных излучений и взаимосвязь между негативными явлениями, активизацией геопатогенных зон и космосом. Рассмотрены существующие методы выявления зон геопатогенных излучений и даны некоторые рекомендации по предотвращению их последствий. Изложены объективные предпосылки перехода от существующей практики констатации катастроф и аварий к деятельности, основан-ной на концепции прогнозирования и предотвращения разрушительных последствий от природно-техногенных катастроф. Для всех, интересующихся проблемами взаимодействия природных явлений, надежности техники и здоровья людей.

Открыть файл16-248.jpg16.gif17

В.А. Ацюковский

Энергия вокруг нас. Эфиродинамические подходы к разрешению энергетического кризиса. η > 1.

Показаны безграничные возможности использования энергии эфира - высокоэнергетической среды, заполняю-щей все мировое пространство. Для всех, интересующихся проблемами разрешения энергетического кризиса.

Открыть файл17-248.jpg17.gif18

В.А. Ацюковский, Г.Ф. Сойников

Информационный интерфейс в авиационном оборудовании. Борьба нового с новым и совершенного с новым. В книге изложены принципы построения каналов проводных связей для помехоустойчивой передачи аналоговой и цифровой информации в сложных информационно - измерительных комплексов и системах управления объектами, показана борьба за технически эффективный информационный интерфейс в отечественной и зарубежной авиации. Для инженеров и научных работников, работающих в области проектирования и отладки сложных управляющих и технологических систем.

Открыть файл

18-248.jpg18.gif19

В.А. Ацюковский

Приключения инженера.

В книге рассказаны различные истории, приключившиеся с автором и его товарищами в связи с работами по авиационной бортовой системотехнике, а также по теоретической физике, прикладной математике, социологии и философии. Для студентов, инженеров, научных сотрудников и вообще для всех.

Открыть файл 19-248.jpg19.gif20

В.А. Ацюковский, Д.А. Буркович

Науку спасут дилетанты.

В книге разъяснено, что слово «дилетант» имеет итальянское происхождение и означает человека, занимающегося наукой не по принуждению или по обязанности, а с удовольствием. Показано, что благодаря упорному труду дилетанты часто достигали более высоких результатов, чем профессионалы. В книге также приведены советы начинающим дилетантам, которые пробуют свои силы в новых для них направлениях, а также рассказано о некоторых дилетантах, затмивших своими результатами профессионалов. Для школьников, студентов, аспирантов, молодых ученых и всех, интересующихся методологией науки и не боящихся прослыть дилетантами.

Открыть файл20-248.jpg20.gif21

В.А. Ацюковский

Критический анализ основ теории относительности.

В аналитическом обзоре рассмотрены логические основания специальной и общей теории относительности А.Эйнштейна, методические особенности постановки экспериментов и интерпретации их результатов. Проанализированы итоги экспериментов, проведенные различными исследователями в целях проверки справедливости положений и выводов теории относительности, дана их критическая оценка. Книга рассчитана на широкий круг читателей, интересующихся проблемами Теории относительности А.Эйнштейна.

Открыть файл21-248.jpg21.gif22

В.А. Ацюковский

Сборник статей:

Блеск и нищета теории относительности Эйнштейна. Вековой блеф физической "теории". За материализм в науке. Всеобщие физические инварианты и предложения по модернизации Международной системы единиц СИ. Наука и религия сегодня. Об одном забытом методе светолечения. Что такое наука.

Открыть файл

22-248.jpg22.gif23

В.А. Ацюковский

Философия и методология современного естествознания. В книге рассмотрены некоторые основные положения философии и методологии современного естествознания, показана ведущая роль физики и проанализировано философское положение в ведущих областях естествознания - теоретической, атомной и ядерной физике, электродинамике и космологии. Показана роль естествознания в общественном производстве и рассмотрен ряд философских положений применительно к современному состоянию и развития естествознания. Рекомендуется в качестве учебного пособия для студентов, изучающих философию науки. Для всех, интересующихся современным состоянием естествознания и путях его дальнейшего развития.

Открыть файл

23-248.jpg23.gif

rk5-lib.bmstu.ru

:: * ' Leforio - Левитация. Ацюковский "Общая эфиродинамика" Глава 2

Ацюковский "Общая эфиродинамика" Глава 2

Из книги В.А. Ацюковского "Общая эфиродинамика" М., Энергоатомиздат, 1990.

Глава 2

КРАТКАЯ ИСТОРИЯ ЭФИРА

"Согласно общей теории относительности пространство немыслимо без эфира".

А. Эйнштейн. "Эфир и теория относительности". Собрание научных трудов. М.: Наука. 1965. Т. 1. С. 689.

"Мы не можем в теоретической физике обойтись без эфира, т.е. континуума, наделенного физическими свойствами".

А. Эйнштейн. "Об эфире". 1924 г. Собрание научных трудов. М.: Наука. 1966. Т. 2. С. 160.

2.1. Краткий обзор теорий и моделей эфира

Необходимость критического рассмотрения многочисленных существовавших ранее гипотез, моделей и теорий эфира вытекает из того обстоятельства, что, несмотря на правильную исходную предпосылку: взаимодействие между телами должно обусловливаться какой-то промежуточной средой — эфиром, ни одна из теорий эфира не сумела удовлетворительно объяснить совокупность всех известных явлений, с одной стороны, и не позволила предсказать каких-либо новых направлений исследований, с другой. В результате этого в ходе развития физики были отброшены не только эти теории, модели и гипотезы, но также и собственно понятие эфира, как "окончательно себя дискредитировавшее".

После появления специальной теории относительности сам вопрос о существовании эфира был поставлен под сомнение в связи с отсутствием более или менее удовлетворительной теории эфира. Это обстоятельство привело к тому, что дальнейшие углубление и развитие теорий эфира были прекращены.

Однако в 1920 г. в работе "Эфир и теория относительности" Эйнштейн показал, что в пространстве без эфира "не только было бы невозможно распространение света, но не могли бы существовать масштабы и часы, и не было бы никаких пространственно-временных расстояний в физическом смысле слова", но это уже ничего не изменило в вопросе признания эфира как материальной среды.

Рассмотрим основные концепции эфира, существовавшие в естествознании, и попытаемся проанализировать их положительное значение и недостатки.

Несмотря на то что ряд исследователей истории эфира и развития физических представлений приписывают введение в естествознание идеи эфира Рене Декарту (1596-1650 гг.) [7], а идеи атомизма — Демокриту (470—380 гг. до н.э.) [1—5], следует считать, что и понятие эфира как мировой среды, и понятие атомов — элементов веществ были известны задолго до этого и сопровождали практически всю известную ныне историю человеческой цивилизации.

Есть все основания полагать, что идеи эфира были, по крайней мере, в VI—IV вв. до н.э., а вероятнее всего, и значительно ранее распространены достаточно широко. Так, основные древнеиндийские учения — джайнизм, локаята, вайшешика, ньяя и другие, такие религии, как брахманизм и буддизм, изначально содержали в себе учение об эфире (акаша), как о единой, вечной и всепроникающей физической субстанции, которая непосредственно не воспринимается чувствами. Эфир един и вечен. Материя вообще (пудтала) состоит из мельчайших частиц (ану), образующих атомы (параману), обладающих подвижностью (дхармой). Все события происходят в пространстве и во времени.

Пракрити — материя в учении санхья, созданном мудрецом Канадой (Глукой), — ничем не порожденная первопричина всех вещей. Она вечна и вездесуща. Это самая тонкая, таинственная и огромная сила, периодически создающая и разрушающая миры. Ее элементы (гуны) просты, неделимы и вечны.

Джайнисты считают, что их учение было передано им 24 учителями. Последний, Вардхамана жил в VI в. до н.э., его предшественник Паршванатха — в IX в. до н.э., остальные — в доисторические времена.

В древнекитайском даосизме (IV в. до н.э.) в каноне "Дао дэ цзин" и трактатах "Чжуан-цзы" и "Лао-цзы" указывается, что все в мире состоит из частиц грубых ("цу") и тончайших ("цзин"). Они образуют единый "ци" — эфир, изначальный, единый для всех вещей. "Единый эфир пронизывает всю Вселенную". Он состоит из "инь" (материальное) и "ян" (огонь, энергия). "Нет ни одной вещи, не связанной с другой, и всюду проявляются инь и ян" [6] .

В древней Японии философы полагали, что пространство заполнено мукёку — беспредельной универсальной сверхъестественной силой, лишенной качеств и форм, недоступной восприятию человеком. Мистический абсолют такёку является природой идеального первоначала "ри", связанного с материальным началом "ки". "Ри" — энергия, которая вечно связана с "ки" — материей и без него не существует.

Есть все основания предположить, что все мировые религии — буддизм, христианство, конфуцианство, синтоизм, индуизм, иудаизм и др. — в том или ином виде на ранней стадии заимствовали материалистические идеи древней эфиродинамики, а на более поздней стадии развития выхолостили учение, отказавшись от материализма в пользу мистицизма в угоду пришедшим к власти господствующим классам. В Древней Греции это произошло, вероятнее всего, после революции VII-VI вв. до н.э., положившей конец родовому строю и приведшей к победе рабовладельчества.

Однако передовые мыслители пытались сохранить древние материалистические знания. Фалесом Милетским (625—547 гг. до н.э.) — древнегреческим философом, родоначальником античной и вообще европейской философии и науки, основателем милетской философской школы — был поставлен вопрос о необходимости сведения всего многообразия явлений и вещей к единой основе (первостихия или первоначалу), которой он считал жидкость ("влажную природу") [1, 2].

Анаксимандром (610-546 гг. до н.э.), учеником Фалеса, было введено в философию понятие первоначала — "апейрона" — единой вечной неопределенной материи, порождающей бесконечное многообразие сущего [1,2].

Анаксимен (585—525 гг. до н.э.), ученик Анаксимандра, этим первоначалом считал газ ("воздух"), путем сгущения и разрежения которого возникают все вещи.

Развитие идей "первоначала" было произведено Левкиппом (V в. до н.э.), выдвинувшим идею пустоты, разделяющей все сущее на множество элементов, свойства которых зависят от их величины, формы, движения, и далее — учеником Левкиппа Демокритом, являющимся основоположником атомизма.

По ряду свидетельств [1-3, 5] Демокрит вначале обучался у халдеев и магов, присланных в дом его отца для обучения детей, а затем в стране Мидии при посещении магов [3]. Сам Демокрит не приписывал себе авторства атомизма, упоминая, что атомизм заимствован им у мидян, в частности у магов — жреческой касты (племени, по свидетельству Геродота), одного из шести племен, населявших Мидию (северо-западные области Иранского нагорья).

Господствовавшая идея магов (могучих) — внутреннее величие и могущество, сила мудрости и знание. По ряду свидетельств маги заимствовали свои знания у халдеев, которых считали основателями звездочетства и астрономии. Халдеи, которым в древней Греции и древнем Риме придавалось большое значение, являлись жрецами-гадателями, а также натуралистами, математиками, теософами. Маги основали учение (магию), позволявшее на основе знания тайн природы производить необычайные явления. В дальнейшем это учение, к сожалению, было дискредитировано многочисленными псевдомагами — шарлатанами.

Наиболее подробно атомизм древности отражен именно в работах Демокрита, чему посвящено много литературных исследований. Следует, однако, заметить, что некоторые положения атомизма Демокрита остались непонятыми до настоящего времени практически всеми исследователями его творчества. Речь прежде всего идет о соотношениях атомов и частей атомов (амеров).

Демокрит указывал, что атомы (атомос) — элементы вещества — неделимы физически, неразрезаемы в силу плотности и отсутствия в них пустоты. Атомы наделены многими свойствами тел видимого мира: изогнутостью, крючковатостью, пирамидальностью и т.п. В своем бесконечном многообразии по форме, по величине и порядку атомы образуют все содержимое реального мира. Однако в основе этих различающихся по величине и форме атомов лежат амеры (америс) — истинно неделимые, лишенные частей.

Идея о двух видах атомов была упомянута и последующими исследователями, например Эпикуром (342-271 гг. до н.э.).

Амеры (по Демокриту) или "элементы" (по Эпикуру), являясь частями атомов, обладают свойствами, совершенно отличными от свойств атомов. Например, если атомам присуща тяжесть, то амеры полностью лишены этого свойства.

Полное непонимание на протяжении многих веков этого кажущегося противоречия привело к существенному искажению толкования учения Демокрита. Уже Александр Афродийский упрекает Левкиппа и Демокрита в том, что не имеющие частей неделимые, постигаемые умом в атомах и являющиеся их частями, невесомы. Это непонимание продолжается и в настоящее время. Так, С.Я. Лурье упоминает об амерах как о математических величинах. М.Д. Ахундов продолжает истолковывать амеры как абстрактное математическое понятие [4].

Упомянутое кажущееся противоречие имеет в своей основе представление о том, что вес (тяжесть, гравитация) есть врожденное свойство любой материи. Между тем гравитация может быть объяснена как результат движения и взаимодействия (соударений) амеров. Тогда атом как совокупность амеров, окруженный амерами же, может испытывать притяжение со стороны других атомов благодаря импульсам энергии, передаваемым амерами по-разному в зависимости от того, с какой стороны от атома находятся другие атомы, что и создает эффект взаимного притяжения атомов. Амеры же, являясь носителями кинетической энергии, никакой тяжестью обладать на будут. Следовательно, если полагать гравитацию следствием проявления движения совокупности амеров, а не врожденным свойством материи (явлением, свойственным комплексу и не принадлежащим его частям), то противоречие легко разрешается. Вся же совокупность амеров, перемещающихся в пустоте, является общей мировой средой, апейроном, по выражению Анаксимандра, в позднейшем наименовании по-русски — эфиром.

Таким образом, эфир имеет достаточно древнюю историю, восходя к самым началам известной истории культурного человечества.

Рене Декарт в существенно более поздние времена вновь поставил вопрос о существовании материи, сплошь заполняющей все пространство, ответственной, в частности, за перенос световых волн. Декарт объяснял образование материи вообще и планет, в частности, свойством вихрей эфира, состоящего из множества круглых частиц. В некоторых своих работах [7] Декарт пытается конструировать механические модели физических явлений, иногда противоречивые.

Ньютон (1643—1727 гг.) несколько раз менял свою точку зрения относительно структуры эфира, а также о самом факте его существования [8—10]. Однако в конце концов Ньютон высказался достаточно определенно и в своих последних работах взгляды на эфир совершенствовал, развивал, но не менял кардинально. Ньютон считал возможным "вывести из начал механики и все остальные явления природы", полагая, что "все эти явления обусловливаются и некоторыми силами, с которыми частицы тел вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга". В работе "Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света" [8] Ньютон развивает, в частности, мысль о возможности превращения света в вещество и обратно.

В 1717 г. на 75-м году жизни во втором английском издании "Оптики" Ньютон в форме вопросов и ответов излагает свою точку зрения относительно эфира. Так, градиент плотности эфира при переходе от тела в пространство применяется для объяснения тяготения, при этом эфир подразумевается состоящим из отдельных частиц. "Такое возрастание плотности, — пишет Ньютон, — на больших расстояниях может быть чрезвычайно медленным; однако если упругая сила этой среды чрезвычайно велика, то этого возрастания может быть достаточно для того, чтобы устремлять тела от более плотных частей среды к более разреженным со всей той силой, которую мы называем тяготением".

Ньютон вновь ставит вопрос об атомистическом строении эфира: "Если кто-нибудь предположит, что эфир (подобно нашему воздуху), может быть, содержит частицы, которые стремятся отталкиваться одна от другой (я не знаю, что такое этот эфир), что его частицы крайне малы сравнительно с частицами воздуха и даже света, то чрезвычайная малость этих частиц может способствовать величине силы, благодаря которой частицы отталкиваются друг от друга, делая среду необычайно разреженной и упругой в сравнении с воздухом и, следовательно, в ничтожной степени способной к сопротивлению движениям брошенных тел и чрезвычайно способной вследствие стремления к расширению давить на большие тела".

Таким образом. Ньютон сам указал возможность обойти затруднение, возникающее вследствие сопротивления эфира движению небесных тел.

"Если этот эфир предположить в 700000 раз более упругим, чем наш воздух, и более чем в 700000 раз разреженным, то сопротивление его будет в 600000000 раз меньшим, чем у воды. Столь малое сопротивление едва ли произведет заметное изменение движений планет за десять тысяч лет".

В этой же работе Ньютон спрашивает, не является ли зрение результатом колебаний эфира в сетчатке и нервах.

Майкл Фарадей (1791—1867 гг.), уверенный в существовании эфира ("мирового эфира"), представлял его как совокупность неких силовых линий. Фарадей категорически отрицал возможность действия на расстоянии (actio in distance) через пустоту — точку зрения многих физиков того времени. Однако Фарадеем природа и принцип устройства силовых линий раскрыты не были [11-13].

Джеймс Клерк Максвелл (1831—1879 гг.) в своих работах, среди которых нужно в первую очередь отметить [14—18], делает вывод о распространении возмущений от точки к точке в мировом эфире.

"Действительно, — пишет Максвелл, — если вообще энергия передается от одного тела к другому не мгновенно, а за конечное время, то должна существовать среда, в которой она временно пребывает, оставив первое тело и не достигнув второго. Поэтому эти теории должны привести к понятию среды, в которой и происходит это распространение".

Приняв полностью точку зрения Фарадея, Максвелл, как и Фарадей, не дает какой-либо модели эфира и ограничивается общим представлением о "силовых линиях". Следует, правда, все же указать, что в [17] Максвелл упоминает об эфире как о жидкости и выводит свои знаменитые уравнения в работах [16, 18], опираясь на представления Гельмгольца о движении вихрей в жидкой среде.

В течение XIX в. было выдвинуто несколько моделей эфира. Значительная часть их не отвечала на вопрос об устройстве эфира и характере взаимодействий. Авторы этих теорий пытались приписать эфиру те или иные свойства, с помощью которых можно было ожидать хотя бы принципиального объяснения некоторых явлений [19-21].

Так, для объяснения годичной аберрации света звезд, открытой Брадлеем в 1728 г. и достигающей 20,5", Стоксом в 1845 г. была высказана мысль об увлечении Землей окружающего эфира [22—24]. Более детальные расчеты показали, однако, что принятие идеи Стокса без каких-либо оговорок означает необходимость наличия потенциала скорости эфира во всем окружающем Землю пространстве. "Для того чтобы обойти это затруднение, — пишет Лоренц [19], — можно использовать то обстоятельство, что существование потенциала скоростей не является необходимым во всем пространстве, окружающем Землю, так как мы имеем дело только с ограниченной областью. Однако это предположение повело бы нас к очень искусственным и маловероятным построениям". Таким образом, идея Стокса не нашла дальнейшего развития вследствие сложности построения, хотя в ней, безусловно, содержалось рациональное зерно. Кроме того, никаких предположений о характере взаимодействий эфира с Землей и природе самого эфира Стокс не высказал.

Планк показал, что трудности, имевшиеся в гипотезе Стокса, можно избежать, если предположить, что эфир может сжиматься и подвержен влиянию силы тяжести. Никаких предположений о возможных причинах такого влияния Планк не высказывал. В своих речах Планк показал, что это предположение указывает на существенную конденсацию эфира в поле силы тяжести. Около Земли эта конденсация по сравнению с открытым пространством составляет 60000, около Солнца — еще в 28 раз больше. Дальнейшего развития гипотеза Планка не получила.

Идею о неподвижном эфире впервые, по-видимому, высказал Френель в 1818 г. в письме к Араго, затем эта идея была существенно развита и дополнена Лоренцем в работе "Теория электронов" [28]. По идее Френеля эфир представляет собой сплошную упругую среду, в которой находится вещество частиц атомов, в общем никак не связанных с этой средой. Роль эфира — передача механических колебаний и волн. При объяснении аберрации Френель сначала исходил из простого сложения скоростей Земли и света. Однако некоторые эксперименты, в частности опыт Араго (1818—1819 гг.) по интерференции поляризованных пучков света и эксперимент Восковича-Эре с телескопом, наполненным водой, показали, что дополнительных отклонений света, которые должны были быть, если бы эфир оставался неподвижным, нет. Для спасения гипотезы Френель предложил ввести коэффициент увлечения света средой

k = 1 - 1/n2,

где n — коэффициент оптического преломления среды [25—27].

Пояснение при этом сводится к тому, что движущаяся среда своими атомами пытается увлечь за собой свет, в то время как эфир, оставаясь неподвижным, препятствует этому. Учет коэффициента увлечения позволил получить хорошее совпадение теории и опыта. Однако Френель также не пытался раскрыть причину увлечения эфира этой средой. Получается как бы три независимые физические субстанции: отдельно эфир, отдельно оптическая среда и, наконец, отдельно свет при полной неясности их физического взаимодействия.

Численно коэффициент увлечения Френеля хорошо объяснял результаты опыта Физо, проведенного последним в 1851 г. и повторенного Зееманом в 1914-1915 гг. [29].

Герцем была выдвинута идея о полном захвате эфира материей [30, 31]. Гипотеза Герца, однако, находится в противоречии с экспериментом Физо, поскольку этот эксперимент показал лишь частичный захват эфира материей.

Предыдущие гипотезы имели своей целью объяснение частичного увлечения света рабочим телом, пропорционального первой степени отношения скоростей рабочего тела и света. В более поздних экспериментах, проведенных Майкельсоном в 1881 г. и повторяемых другими (Морли, Миллером, Пиккаром, Стаэлем, Кеннеди, Илингвортом) вплоть до 1927 г., основную роль играл квадрат этого отношения.

В экспериментах Майкельсона — Морли с интерферометром была сделана попытка подтвердить теорию Френеля и Лоренца о неподвижном эфире. Эксперимент ставил своей целью обнаружить "эфирный ветер", который неминуемо был бы, если бы эфир был неподвижен в пространстве. Наличие эфирного ветра ожидалось обнаружить по изменению скорости света, пропускаемого вдоль направления эфирного ветра, направление которого, в свою очередь, определяется движением Земли вокруг Солнца со скоростью 30 км/с.

Считается, что нив 1881, ни в 1887 гг. такое движение Майкельсоном и Морли не было обнаружено [32—34]. Работы Миллера, которому удалось обнаружить эфирный ветер, нарастающий с увеличением высоты, были завершены только к 1927 г. и поэтому во внимание не принимались (так же, как и в настоящее время).

Лоренцем было сделано предположение о возможном сокращении плеч интерферометра, направленных по ходу движения эфирного ветра. Объяснение Лоренца исходило из того предполагаемого факта, что молекулярные и атомные силы вещества плеч интерферометра имеют электромагнитное происхождение, следовательно, перемещаясь в неподвижном эфире, эти силы начнут создавать дополнительную деформацию [35].

Теория Лоренца, однако, противоречит исходному представлению об эфире как о переносчике взаимодействий. В самом деле, если эфир не принимает никакого участия в движении вещества, то и вещество не может взаимодействовать с эфиром. Следовательно, эфир не может передать веществу энергию. Налицо логическое противоречие, проистекающее из отсутствия качественной картины строения и взаимодействия эфира и вещества.

Ритц, введя в уравнения Максвелла приведенное время и по существу вернувшись к гипотезе Лоренца, получил удовлетворительное совпадение уравнений Максвелла с результатами оптических экспериментов. В результате родилась "баллистическая гипотеза" Ритца [36, 37], из которой следовало, что движущийся источник света испускает свет со скоростью, равной в абсолютных координатах геометрической сумме скоростей света в вакууме и скорости источника. Такая постановка, будучи беспредельно распространенной, приводит к положению, при котором для двойных звезд должны иметь место моменты, когда звезда, движущаяся по направлению к Земле, должна казаться движущейся вспять. Наблюдения Де-Ситтера (1913) [38] показали, что такого явления нет.

В своих рассуждениях Ритц оперирует только математическими выкладками, и так же как и Лоренц, не указывает на характер связей между веществом и эфиром, не рассматривает природу света и строение эфира.

Таким образом, перечисленные гипотезы, модели и теории эфира, возникшие в XIX в., во-первых, рассматривали эфир как сплошную однородную среду с постоянными свойствами, одинаковыми для всех точек пространства и любых физических условий, во-вторых, не делали никаких предположений ни о структуре эфира, ни о характере взаимодействий между веществом и эфиром. Такое положение привело к невозможности в рамках этих теорий, фактически опирающихся на какое-либо одно частное свойство эфира, удовлетворить всему разнообразию известных явлений. Некоторое исключение все же здесь составляет теория Френеля, поставившая скорость света в зависимости от свойств среды, в которой свет распространяется. Теория Френеля получила дальнейшее развитие в работах Эйнштейна.

Параллельно с описательными концепциями эфира развивались и некоторые гипотезы, пытавшиеся нащупать строение эфира. Эти гипотезы получили название "механических", поскольку они оперируют с механическими представлениями — перемещениями и силами.

Как уже упоминалось, первые механические модели были предложены Рене Декартом и Исааком Ньютоном. Некоторые механические теории и модели эфира были разработаны в XVIII, XIX столетиях и позже.

Значительный интерес представляет собой теория Ж.Л. Лесажа, призванная объяснить сущность тяготения. По Лесажу [39—41] эфир представляет собой нечто, подобное газу. с той существенной разницей, что частицы эфира практически не взаимодействуют между собой, соударяясь чрезвычайно редко. Весомая материя поглощает частицы, поэтому тела экранируют потоки частиц эфира. Это приводит к тому, что второе тело испытывает неодинаковое с различных сторон подталкивание со стороны частиц эфира и начинает притягиваться к первому телу. Теория эфира не встретила должного внимания в момент появления, но сто лет спустя ей было оказано большое внимание Шраммом [42 43], Томсоном [44], Тэтом [45].

Теория эфира как упругой среды предлагалась Навье (1824 г.), Пуассоном (1828 г.). Коши (1830 г.) [19].

Навье рассматривал эфир как несжимаемую жидкость, обладающую вязкостью. Вязкость эфира рассматривалась им как причина взаимодействий между частицами вещества и эфиром, а также между эфиром и частицами вещества, следовательно, частиц вещества между собой.

Коши рассматривал эфир как сплошную среду и оперировал напряжениями и деформациями в каждой точке пространства. В работах по оптике Коши дал математическую разработку теории Френеля и теории дисперсии. В дальнейшем выяснилось, что данное объяснение приводит фактически к толкованию магнитного поля как перемещения частиц эфира, что противоречило факту существования диэлектрического смещения.

В своих работах Нейман [46, 47] исходил из предположения о постоянстве плотности эфира во всех средах. Рассматривая эфир как упругую среду, Нейман анализировал процессы поляризации света.

Грин рассматривал эфир [19] как сплошную упругую среду, на основании чего, исходя из закона сохранения энергии, применяемого к деформированному упругому телу, он рассмотрел отражение и преломление света в кристаллических средах. В перечисленных механических моделях природа эфира и причины того, что эфир ведет себя как упругое тело, не выяснились.

В математических работах Мак-Куллаха (1809—1847 гг.), в которых произведено геометрическое исследование поверхности световой волны, эфир рассматривался как среда, в которой потенциальная функция является квадратичной функцией углов вращения [48]. Эфир Мак-Куллаха сплошной. Хотя теория Мак-Куллаха является теорией упругой среды и ни о каком электромагнетизме в ней нет ни слова, полученные им уравнения, как отмечает Лоренц, по существу совпадают с уравнениями электромагнитной теории Максвелла. Сравнение с другими теориями упругого эфира показывает, что существенная положительная особенность теории Мак-Куллаха заключается именно в наличии понятия вихревого движения. По выражению Ван-Герина теория Мак-Куллаха — это вихревая теория эфира.

В. Томсоном (лордом Кельвином, 1824—1907 гг.) было предложено несколько моделей эфира [49—55]. Сначала Кельвин пытался усовершенствовать модель эфира Мак-Куллаха, затем предложил модель квазилабильного эфира — изотропной однородной среды, в которой присутствуют вихри. Недостатком модели оказалась неустойчивость равновесия эфира, поскольку потенциальная энергия в этой модели нигде не имеет минимума. Модель квазилабильного эфира требует закрепления граничных условий, что противоречит представлениям о беспредельном и безграничном пространстве Вселенной.

Кельвином высказывались предположения о скорости эфира как о магнитном потоке и о скорости вращения эфира как величине диэлектрического смещения. Данные гипотезы не получили должного развития в связи с математическими трудностями. Дальнейшие разработки привели Кельвина к построению модели эфира из твердых и жидких гиростатов (гироскопов) для получения системы, оказывающей сопротивление только деформациям, связанным с вращением. Кельвин показал, что в этом случае получаемые уравнения совпадают с уравнениями электродинамики. Такая модель позволяет также объяснить распространение световых волн. Кельвин также пытался рассмотреть эфир как жидкость, находящуюся в турбулентном движении: он показал, что турбулентное движение сопровождается колебательным движением.

Дальнейшее развитие теория получила в работе Кельвина "О вихревых атомах" (1867 г.) [52], где эфир представлен как совершенная несжимаемая жидкость без трения. Кельвин показал, что атомы являются тороидальными кольцами Гельмгольца. Эта идея несколько ранее выдвигалась Раннигом в работе "О молекулярных вихрях" (1849-1850 гг.), где автором рассматривались некоторые простейшие взаимодействия.

Школа Дж.Дж. Томсона (1856—1940 гг.) продолжила эту линию. В работах "Электричество и материя", "Материя и эфир", "Структура света", "Фарадеевы силовые трубки и уравнения Максвелла" и других [56—60] Дж.Дж. Томсон последовательно развивает вихревую теорию материи и взаимодействий. Он показал, что при известных простых предположениях выражение квантового вихревого кольца совпадает с выражением закона Планка Е = hv, Томсоном, исходя из вихревой теории эфира, показано, что E = mc2. Авторство этой формулы приписывается Эйнштейну, хотя Дж.Дж. Томсон получил ее в 1903 г. задолго до Эйнштейна, а главное, из совершенно других предпосылок, чем Эйнштейн, исходя, в частности, из наличия эфира.

Дж.Дж. Томсон создал весьма стройную теорию, изложенную в ряде работ, изданных с 1880 по 1928 г. Единственным, пожалуй, недостатком этой теории является идеализация свойств эфира, представление о нем как о сплошной идеальной несжимаемой жидкости, что привело эту теорию к некоторым существенным противоречиям.

Таким образом, В. Томсон (лорд Кельвин) и Дж.Дж. Томсон рассматривают единую материю — эфир, а различные ее проявления обусловливают различными формами его кинетического движения.

Интересно отметить, что вихревые теории эфира не прошли мимо внимания Энгельса. В работе "Электричество" [61] он пишет: "Электричество — это движение частиц эфира, и молекулы тела принимают участие в этом движении. Различные теории по-разному изображают характер этого движения. Теории Максвелла, Ханкеля и Ренара, опираясь на новейшие исследования о вихревых движениях, видят в нем, каждая по-своему, тоже вихревое движение. И, таким образом, вихри старого Декарта снова находят почетное место во все новых областях знания". "Эфирная теория", по выражению Энгельса, "дает надежду выяснить, что является собственно вещественным субстратом электрического движения, что собственно за вещь вызывает своими движениями электрические явления". Здесь интересно еще и то, что Энгельс большое внимание уделял именно выяснению физической сущности явления, а не просто описательной абстракции.

Ряд теорий эфира был создан в России. Идеи Эйлера (1707-1783) о свойствах мирового эфира [62—64] оказали влияние на Римана (1826—1866), который в своей лекции "О гипотезах, лежащих в основаниях геометрии (1854 г.) изложил концепцию мирового пространства, разрешив некоторые затруднения, с которыми встретился Эйлер.

М.В. Ломоносов (1711—1765) отвергал все специфические виды материи — теплоту, свет, признавал лишь эфир, с помощью которого он, в частности, объяснял и тяготение как результат подталкивания планет частицами за счет разности давлений [65—71]. Эта идея Ломоносова была высказана раньше, чем аналогичная идея Лесажа, почти на сорок лет.

И.О. Ярковским [72] была предложена в семидесятых годах XIX столетия теория газоподобного эфира. Элементы эфира обладали врожденным свойством — при соударении взаимно тормозить друг друга, при устранении препятствия продолжать свое движение так же, как это было до остановки. Природа такого поведения частиц эфира Ярковским не рассматривалась. Опираясь на представление об эфире как о газоподобной среде, Ярковский рассмотрел некоторые физические явления, в частности сделал попытку создать модель тяготения. В двадцатые годы XX столетия модель газоподобного эфира была рассмотрена П.А. Петровским, однако только на уровне качественной модели некоторых отдельных явлений, главным образом тяготения.

В более поздние времена, когда теория относительности была уже широко известна, некоторые советские и зарубежные ученые отстаивали механическую теорию эфира, становясь при этом на точку зрения вихревой модели. Среди этих работ необходимо отметить работы К.Э. Циолковского [73], З.А. Цейтлина [74, 75], носящие преимущественно обзорный характер, работу Уайтеккера [76], работы Н.П. Кастерина [77] и В.Ф. Миткевича [78—80] и др.

В работе Кастерина [77] просматривается глубокая аналогия между вихревыми движениями воздушных потоков и электромагнитными явлениями, указывается на недостаточность представлений математических видов Эйлера относительно вихревых движений, поскольку выводы Эйлера исходили из представлений о сплошной среде, в то время как газ состоит из отдельных частиц и не является сплошным. Кастериным проведено уточнение как уравнений аэродинамики преимущественно применительно к вихревым движениям, так и уравнений электромагнитного поля, а также показана их глубокая аналогия.

В работах академика Миткевича "Работы В. Томсона" (1930 г.), "Основные воззрения современной физики" (1933 г.), "Основные физические воззрения" (1934 г.), [78—80] и других не только отстаивается необходимость признания факта существования эфира, но и предлагается модель, в которую фактически заложены идеи Дж.Дж. Томсона, о чем Миткевич прямо говорит.

Миткевич отстаивал механическую точку зрения на эфир. В одной из своих работ он рассматривал "кольцевой электрон, который можно вычислить как элементарный магнитный вихрь, движущийся по жесткой орбите и вмещающийся в объем, нормально приписываемый электрону". Переносчиком энергии Миткевич считал "замкнутую магнитную линию, оторвавшуюся от источника и сокращающуюся по мере отдачи энергии", и указывал на подобие магнитного потока вихрям Гельмгольца. Все же главным в работах Миткевича являлась не эта модель, достаточно несовершенная, а убеждение в существовании в природе эфира.

В работе "Основные физические воззрения" Миткевич пишет: "Абсолютно пустое пространство, лишенное всякого физического содержания, не может служить ареной распространения каких бы то ни было волн. ... Признание эфира, в котором могут иметь место механические движения, т.е. пространственные перемещения элементарных объемов этой первоматерии, непрерывно заполняющей все наше трехмерное пространство, само по себе не является признаком механистической точки зрения. ... Необходимо, наконец, вполне определенно реабилитировать "механическое движение", надлежащим образом модернизировав, конечно, содержание этого термина, и раскрепостить физическую мысль, признав за ней законное право оперировать пространственными перемещениями соответствующих физических реальностей во всех случаях, когда мы стремимся познать конечную структуру того или иного физического процесса. ... Борьба с ошибочной научно-философской установкой, которая именуется механистической точкой зрения, не должна быть подменена в современной физике совершенно необоснованным гонением на законные попытки рассмотрения тех механических движений, которые, несомненно, составляют основу структуры всякого физического процесса, хотя никоим образом сами по себе не исчерпывают его сущности. Следует, наконец, перестать отождествлять термины "механический" и "механистический", как это, к сожалению, нередко имеет место в современной научно-философской и физической литературе".

Наряду с разработками теорий и моделей эфира развивалась точка зрения об отсутствии эфира как такового в природе.

В 1910 г. в работе "Принцип относительности и его следствия" [81] Эйнштейн писал, что "нельзя создать удовлетворительную теорию, не отказавшись от существования некой среды, заполняющей все пространство". Позже в работах "Эфир и теория относительности" (1920 г.) [82] и "Об эфире" (1924 г.) Эйнштейн изменил свою точку зрения относительно существования эфира, однако это обстоятельство малоизвестно и не повлияло на отношение к эфиру со стороны большинства физиков-теоретиков.

Академик Я.И. Френкель в некоторых работах категорически отрицал существование мирового эфира, сравнивая поиск свойств эфира с "богоискательством и богостроительством" [84], и отстаивал принцип дальнодействия.

В настоящее время идеи, связанные с "действием на расстоянии", продолжают развиваться, однако наряду с этим во многих работах все чаще используется представление о "физическом вакууме", "вакуумной жидкости" и т.п., что фактически восстанавливает представление о мировой среде под другим названием. Обнаружен ряд вакуумных эффектов — нулевой уровень энергии полей, виртуальные состояния частиц, поляризация вакуума и т.п., что заставляет отказаться от представления о вакууме как о пустоте и вновь поставить вопрос о его структуре.

Список литературы к гл.1

1. Волков Г.Н. У колыбели науки. М.: Молодая гвардия, 1971.

2. Маковельский А.О. Древнегреческие атомисты. Баку: Изд-во АН Аз ССР. 1946.

3. Лурье С.Я. Демокрит. Л.: Наука, 1970. С. 44.

4. Ахундов М.Д. Проблема прерывности и непрерывности пространства и времени. М.: Наука, 1974. С. 10-55.

5. Зубов В.П. Развитие атомистических представлений до начала XIX века М.: Наука, 1965.

6. Китай и Япония. История и философия/ Под ред. С.Л. Тихвинского. М.: Изд-во вост. лит., 1961. С. 121.

7. Декарт P. Избранные произведения: Пер. с франц./ Под ред. В.В. Соколова. М.: Госполитиздат, 1950.

8. Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света: Пер. с англ./ Под ред. Г.С. Ландсберга. М.: Гостехтеориздат, 1954.

9. Ньютон И. Математические начала натуральной философии: Пер. с лат. А.Н. Крыловы. Петроград, 1916.

10. Вавилов С.И. Эфир, свет и вещество в физике Ньютона//Сб. статей Исаак Ньютон/Под ред. С.И. Вавилова. М.-Л. Изд-во АН СССР, 1943.

11. Фарадей М. Экспериментальные исследования по электричеству: Пер. с англ./ Под ред. Т.П. Кравца. М.: Изд-во АН СССР. Т .1. 1947; Т. 2. 1951; Т. 3. 1959.

12. Гельмгольц Г. Фарадеевская речь: Современное развитие фарадеевских воззрений на электричество: Пер. с англ. В. Тюрина. СПб.: Изд-во П.П. Сойкина. 1898.

13. Фарадей М. Силы природы и их взаимные отношения. Публичные лекции: Пер. с англ. В. Лучинина. Изд-во О. И. Бакет, 1865.

14. Максвелл Дж. К. Избранные сочинения по теории электромагнитного поля: Пер. с англ. 3.А. Цейтлина. М.: Гостехтеориздат, 1952.

15. Максвелл Дж.К. Материя и движение: Пер. с англ. М.А. Антоновича/ Под ред. Б.П. Вейнберга. СПб.. Изд-во Л-Ф. Пантелеева. 1885.

16. Maxwell J.K. Treatise on Electricity and Magnetism. 1873.

17. Максвелл Дж.К. О фарадеевских силовых линиях: Пер. с нем. М.: Типография О.Л. Сомовой. 1907.

18. Максвелл Дж.К. О физических силовых линиях. В сб.: Избр. соч. по теории электромагнитного поля: Пер. с англ./Под ред. П.С. Кудрявцева. М.: Гостехтеориздат, 1952. С. 107-248.

19. Лоренц Г.А. Теории и модели эфира: Пер. с англ./ Под ред. А.К. Тимирязева. М.-Л.: ОНТИ, 1936.

20. Лауэ М. История физики. Пер. с нем./ Под ред. И.В. Кузнецова. М.: Гостехиздат. 1956.

21. Кагальникова И.И. История развития нерелятивистских представлений о природе гравитации. Ученые записки Ярославского ГПИ им. К.Д. Ушинского. Ярославль: Изд-во ГПИ. 1963. Вып. 56. С. 87-188.

22. Stockes G.G. On the Aberation of Light. Phil. Mag. XXVII. 1845. P. 9.

23. Lorentz H.A. De aberratic theorie van Stokes. Zittingsverslagen. Kon. Akad. v. Wet. Amsterdam. 1892. S. 97.

24. Lorentz H.A. De aherratietheorie van Stokes in de onderteflung van een, aether die niet overal dezelf de dicht held neeft. Zittingsverslagen Kon. Akad. v. Wet. Arnst. VII. 1899. S. 528.

25. Fresnel A.J. Memoire sur la diffraction de la luminiere. Paris, 1821.

26. Fresnel AJ. Cohsideration mecaniques sur la polarisation de la luminiere. Paris, 1821.

27. Fiesnel A.J. Memoire sur la double refraction. Paris, 1821.

28. Лоренц Г.А. Теория электронов и ее применение к явлениям светового и теплового излучения: Пер. с англ./ Под ред. А. К. Тимирязева и 3. А. Цейтлина. М.: Гостехтеориздат, 1956.

29. Zeeman P. Proc. Amsterdam Academy. 1915. Vol. 18. S. 398.

30. Hertz H. Untersuchungen Бber die Ausbreitung der elektrischen Kraft. Leipzig, 1894.

31. Hertz H. Grundleichungen der Elektrodynamik fБr ruhende KФrper. Wiedemans Annalen der Physik. 1890. Vol. 40; 1890. Vol. 41.

32. Michelson A.A. The Relation Motion of the Earth and the Luminiferous Aether. Amer. J. of Sd. (3). XXXII. 1881. P. 220.

33. Michelson A.A., Morley E.W. The Relative Motion of the Medium on the Velocity of Light. Ibid. (3). XXXII. 1886. P. 337.

33. Michelson A.A, Morley E.W. The Relative Motion of the Earth and the Luminiferous Ather. Ibid. (3). XXXIV. 1887. P. 333; Phil. Mag. (4). XXIV. 1887. P. 449.

35. Lorentz H.A. De relative beweging. Van de aarde en den aether. Zittingsverslagen Akad. v. Wet. Amsterdam. 1892. S. 74.

36. Ritz W. Ann. de chim. et phys. 13. 145. 1908.

37. Ritz W. Бber ein neues Gesetz der serienspektrum. Physikalische Zeitschrift, Leipzig, 1908,6.

38. W. de Sitter.Amst.Proc. 15,1297. 1913:16, 395, 1913.

39. Lesage G.L. Lucrece G. Newtonian, Nouv. Memoires de Acadeime Royale des Science. Berlin, 1782.

40. LeSage G.L. Physique mecanique de Georges—Lois le Sage (Deux traitees Pierre Prevost). Geneve, Paris, 1818.

41. Prevost P. Deux traites de Phisique Mecanique. Geneve, Paris, 1818.

42. Schramm H. Die allgemeine Bewegung der Materie als Grundursache der Erscheinungen. Wien, 1872.

43. Schramm H. Anriehungskraft als Wirkung der Bewegung. Graz, 1873.

44. Thomson W. Proc. Roy. Soc. Edinbourgh, 1872. Vol. 7. P. 577.

45. Tait P.G. Vorlessungen Бber neuere Fortschritte der Physik. Brauschweig, 1877.

46. Neumann F. Vorlessungen Бber Theoretische Optik. Leip. 1885.

47. Neumann F. Gesammeltewerke. Bd. 1-3, Leipzig, 1906. S. 28.

48. Mac-Cullagh J. An Essay toward a Dinamical Theorie of crystalline Reflexion and Refraction. 1839.

49. Thomson W. On a Gyrostatic Construction for Ether. Math. and Phys. Paper, 1890. Vol. in. P. 100.

50. Thomson W. On the Propagation of Laminar Motion through a turbulently moving inviscied Liquid. Phyl. Mag. (47). XXIV, 1887. P. 324.

51. Thomson W. On the Reflexion and Refraction of Light. Phil. Mag. (4), XXVI. 1886. P. 414.

52. Томсон В. Кельвин. О вихревых атомах// Томсон Дж. Дж. Электричество и материя. М. — Л. Госиздат. 1928. С. 184-198.

53. Thomson W. Ether, Electricity and Ponderable Matter. Math. and Phys Papers 1890. Vol. №. P. 484.

54. Thomson W. On the Motion of Ether produced by collisions of Atoms or Molecules, containing or not containing Electrons. Math. and Phys. Papers. 1911. P. 211.

55. Thomson W. Electrical Insulation in Vacuum. Phil. Mag. VIII. 1904. P. 472.

56. Томсон Дж. Дж. Взаимоотношения между материей и эфиром по новейшим исследованиям в области электричества: Пер. с англ./ Под ред. И. И. Боргмана. СПб.: Изд-во "Естествоиспытатель". 1910. 23 с.

57. Томсон Дж. Дж. Электричество и материя: Пер. с англ./ Под ред. А.К. Тимирязева. М.-Л.: Госиздат, 1928.

58. Томсон Дж. Дж. Корпускулярная теория вещества: Пер. с англ. Г. Левинтова/ Под ред. "Вестника опытной физики и элементарной математики". Одесса 1910.

59. Томсон Дж. Дж. Структура света// Электричество и материя. М.: Госиздат 1928. С. 113-131.

60. Томсон Дж. Дж. Фарадеевы силовые трубки и уравнения Максвелла/ Электричество и материя. М.: Госиздат, 1928. С. 218-234.

61. Энгельс Ф. Электричество// Диалектика природы. К. Маркс и Ф. Энгельс. Соч. 2-е изд. М.: Госполитиздат, 1961. Т. 20. С. 433-485.

62. Euler L. Recherches physiques sur la nature des moinres parties de la matiere. Histoiree de l'Academia de Science de Berlin, 1746.

63. Euler L. Dissertatio de magnete. Opuscuia varil argumenti. Vol. III, 1751.

64. Euler L. Anieitung zur Naturlehre. Bullet. Physicomsth. Acad. St. — Peterbourg, VII, 1849.

65. Ломоносов M.B. Опыт теории о нечувствительных частицах тел и вообще о причинах частных качеств (1743-1744). Полное собрание сочинений. М.: Изд-во АН СССР, 1950. Т. 1.

66. Ломоносов M.B. Заметки о тяжести тел (1743-1744). Там же.

67. Ломоносов M.B. Заметки о сцеплении корпускул (1743-1744). Там же.

68. Ломоносов M.B. Письмо к Эйлеру от 5 июля 1748 г. Там же, 1951. Т. 2.

69. Ломоносов M.B. О тяжести тел и извечности первичного движения (1748). Там же.

70. Ломоносов M.B. Об отношении количества материи и веса (1757—1758). Там. же. 1952. Т. 3.

71. Ломоносов M.B. Рассуждение о твердости и жидкости тел (1760). Там же.

72. Ярковский И.О. Всемирное тяготение как следствие образования весомой материи внутри небесных тел. С.-Петербург, 1912.

73. Циолковский К.Э. Эфирный остров// Путь к звездам. М.: Изд-во АН СССР, 1960. С. 317-326.

74. Цейтлин З.А. Вихревая теория материи, ее развитие и значение// Электричество и материя. М.: Госиздат, 1928.

75. Цейтлин З.А. Развитие воззрений на природу света// Электричество и материя. М.: Госиздат, 1928.

76. Whittaker J.M. Proc. Royal Ed. 1926. Vol. 46. P. 116-306. (Вихревая теория электромагнитного движения).

77. Кастерин Н.П. Обобщение основных уравнений аэродинамики и электродинамики. М.: Изд-во АН СССР, 1937.

78. Миткевич В.Ф. О природе электрического тока. Телеграф и телефон без проводов, № 15. Нижегородская лаборатория, 1922. С. 1-13.

79. Миткевич В.Ф. Работы Фарадея и современное развитие приложений электрической энергии. М.-Л.: ГТТИ, 1932.

80. Миткевич В.Ф. Магнитный поток и его преобразования. М.-Л.: Изд-во АН СССР, 1946.

81. Эйнштейн А. Принцип относительности и его следствия. Собр. науч. тр. М.: Наука, 1965. Т. С. 138-164.

82. Эйнштейн А. Эфир и теория относительности. Собр. науч. тр. М.: Наука, 1965. Т. 1. С. 682-689.

83. Эйнштейн А. Об эфире. Собр. науч. тр. М.: Наука, 1966. Т. 2. С. 154-160.

84. Френкель Я.И. На заре новой физики// Л.: Наука, 1970. С. 136-146, 169-171.

85. Берестецкий В.В. Вакуум// Физический энциклопедический словарь. М.: Советская энциклопедия, 1960. Т. 1. С. 221-222.

86. Fizeau Н. Compt. rend. 1851. Vol 33. P. 349-355; Ann. j. chim et phys. 1859. Vol. 57. P. 385-404.

87. Michelson A.A., Moriey E.W. Amer. J. Sci 1887. Vol. 34. P. 333-345; Phil Mag. 1887. Vol. 24. P. 339-463.

88. Michelson A.A. Compt. rend. 1882. Vol. 94. P. 520-523; Amer. J. Phys 1881. Vol. 22. P. 120-129.

89. Morley E., Miller D. Phil. Mag. 1905. Vol. 9. P. 680-685.

90. Miller D.C. Phys. Rev. 1922. Vol. 19. P. 407-408; Proc. Nat. Acad. Amer. 1.925. Vol. II, N 6. P .306-314; Science. 1925. Vol. 6Д, N 1590. P. 617-621.

91. Миллер Д.К. Эфирный ветер. Доклад, прочитанный в Вашингтонской академии наук. УФН, 1925. Т. 5. С. 177-185.

92. Miller D.C. Significance of the ether-drift experiments of 1925 at Mount Wilson. Sci. 1926. Vol. 68, N 1635. P. 433-443.

93. Conference on Michelson-Morley experiment. The Astrophysical J. 1928. Vol. 68, N 5. P. 341-402.

94. Michelson A.A., Pease F.G., Pirson F. Repetition of the Michelson-Morley experiment. Journal of the Optical Society of America. 1929. Vol. 18, N 3. P. 181-182.

95. Вавилов СИ. Экспериментальные основания теории относительности. Собр. соч. М.: Изд-во АН СССР, 1956. Т. 4. С. 9-109.

96. Azjukowski W. Dynamik des Aethers. Ideen des exakten Wissens. Stuttgart. 1974. N 2. S. 48-58.

97. Ацюковский B.A. Введение в эфиродинамику. Модельные представления структур вещества и полей на основе газоподобного эфира. М., МОИП, секция физ., 1980. Деп. во ВИНИТИ 12.06.80 г. №2760-80 ДЕЛ.

98. Ацюковский B.A. Эксперименты на Маунт Вильсон, Что действительно дали поиски эфирного ветра?// Химия и жизнь. 1982. № 8. С. 82-85.

99. Ацюковский B.A. Эфиродинамическая модель мира. Тезисы докладов школы-семинара "Непериодические быстропротекающие явления в окружающей среде". Томск: Изд-во Томского политехнич. ин-та, 1988. Ч. 1. С. 18-20.

100. Whittaker E.A. History of the Theories of Aether and Electricity, p. 1. The Clasrical Theories. 1951. 435. P. II. The Modern Theories 1900-1926. 1953. London.

101. Larmor J.J. Aether and Matter. Cambridge, 1900.

102. Кудрявцев П.С. История физики/ Под ред. А.К. Тимирязева. М.: Учпедгиз, 1948.

103. Хвольсон О.Д. Курс физики в 5 т. Берлин: Госиздат РСФСР, 1923.

104. Лапчинский В.Г. Физический вакуум. М.: ЦНИИ информации и техникоэкономических исследований по атомной науке и технике, 1982. С. 137—204.

Theosophy.ru Библиотека оккультной и эзотерической литературы

Ацюковский "Общая эфиродинамика" найти в книгах

www.leforio.narod.ru

В.Ацюковский об ошибочности теории относительности в отношении эфира: kactaheda

Спасибо другу michael101063 за пост об эфире и академике В.Ацюковском - основоположнике современной эфиродинамики. Мои скромные комментарии по тексту выделены красным. Наиболее важные вещи я выделил курсивом и большим шрифтом. Как так получилось, что все, то есть эфир, превратился в ничто - вакуум? Итак...

Замечательный российский  ученый, автор теории  эфиродинами,  доктор технических  наук В.Ацюковский  еще  в 1980-х  годах  обратил  внимание  на  ошибочность  выводов  теории  относительности Эйнштейна  в  отношении  отрицания  эфира  и  даже  высказал  предположение,  что  это  связано  не  столько  с  ошибочной  позицией,  сколько  с  нечистоплотной    и  явно  заказной  позицией  Эйнштейна  по  отношению к самой теории эфира.

Так,  в  1982  году  в  журнале  "Химия и Жизнь"  вышла  статься  В.Ацюковского  "Эфирный  ветер  и  лицемерие  Эйнштейна",  в  которой  делался  анализ  научных  исследований  в  области  обнаружения  "эфирного ветра"  и доказывалась  ошибочность  интерпретации  результатов  этих  исследований  и  экспериментов  в  официальной  науке.  Ниже сама статья:

"В конце прошлого века ученым казалось, что достаточно положить лишь несколько мазков на существующую физическую картину мира, и все в природе станет окончательно ясным и понятным. Как известно, эти благодушные настроения были развеяны опытами, приведшими к созданию квантовой механики и теории относительности.

Один из этих решающих экспериментов известен как опыт Майкельсона — Морли, и он заключался в попытке обнаружить движение Земли относительно неподвижного «мирового эфира» — гипотетической среды, заполняющей все мировое пространство и служащей материалом, из вихрей которого построены все частички вещества. То обстоятельство, что движение Земли относительно «мирового эфира» обнаружить не удалось, вынудило Эйнштейна полностью отказаться от какой бы то ни было среды, относительно которой можно было бы обнаружить движение тел.

Но действительно ли опыт Майкельсона — Морли дал, как сейчас принято безоговорочно считать, нулевой результат? Если обратиться к первоисточникам, то создается впечатление, что все не так просто, как обычно излагается в учебниках по физике. Когда в первых опытах «эфирный ветер» обнаружить не удалось, была создана теория, объясняющая это явление. Но впоследствии, когда аналогичные опыты стали давать результаты, отличные от нуля (почему именно, будет рассказано ниже), им уже не придавали значения, поскольку они не предусматривались теорией...

Цель эксперимента, предложенного и осуществленного А. Майкельсоном в 80-х годах прошлого века, заключалась в попытке обнаружить смещение эфира на поверхности Земли. Ожидалось, что скорость «эфирного ветра» составит около 30 км /с, что соответствует скорости движения Земли вокруг Солнца. Майкельсон воспользовался изобретенным им интерферометром с перпендикулярными лучами света, но не обнаружил ожидаемого эффекта.

Однако не совсем правильно считать результаты даже первых экспериментов строго нулевыми. Описывая эксперимент 1887 года, Майкельсон и его помощник Э. Морли отмечали: «Учитывая только движение Земли по орбите, <....> наблюдения показали, что относительное движение Земли и эфира вероятно меньше чем 1/6 орбитальной скорости Земли и наверняка меньше чем 1/4; это значит, что меньше чем 7,5 км/с».  В дальнейшем опыты по обнаружению «эфирного ветра» Майкельсон доверил Э. Морли и Д. Миллеру, а затем работу продолжал один Миллер.

В сотрудничестве с Э. Морли Д. Миллер сконструировал интерферометр, в четыре раза более чувствительный, чем прибор, использованный в первых экспериментах. Длина оптического пути этого интерферометра составляла 65,3 м; скорости 30 км/с соответствовало смещение на 1,4 интерференционные полосы. В результате в 1904 году было действительно надежно установлено, что наблюдаемая скорость эфирного ветра равна нулю.

Однако вчитаемся в то, что писали авторы работы: «Из всего сказанного явствует, что безнадежно пытаться решить вопрос о движении солнечной системы по наблюдениям на поверхности Земли. Но не исключена возможность, что даже на умеренной высоте над уровнем моря, на вершине какой-нибудь уединенной горы, например, относительное движение может быть замеченным с помощью аппарата вроде описанного в наших опытах».

В 1905 г. Морли и Миллер действительно перенесли интерферометр на гору близ озера Эри, на высоту около 250 м над уровнем моря. На этот раз измерения дали положительный результат: было обнаружено смещение интерференционных полос, соответствующее скорости «эфирного ветра» относительно поверхности Земли, равной 3 км/с. В 1919 году прибор был размещен в обсерватории Маунт Вилсон, на высоте 1860 м над уровнем моря; измерения, выполненные в 1920, 1924 и 1925 годах, дали для скорости «эфирного ветра» значения, лежащие в пределах 8—10 км/с. При этом было также замечено, что скорость «эфирного ветра» зависит как от положения прибора в пространстве, так и от времени суток и времени года....

Естественно - ведь угол наклона оси Земли (соответственно и интерферометра) относительно Солнца меняется на протяжении года, а значит и положение интерферометра на поверхности Земли с учетом широты и времени суток также меняется. А поскольку Земля вращается не только вокруг Солнца и своей оси, но еще и вместе с Солнечной системой в одном из рукавов вращающейся галактики Млечный Путь, то задача становится еще более интересной :) В дополнение видео, правда на английском:

Potential ways to detect an ether wind | Special relativity | Physics | Khan Academy

В сообщении 1925 года Д. Миллер делает следующий вывод: «Существует определенное смещение интерференционных полос — такое, какое было бы вызвано относительным движением Земли в эфире на Маунт Вилсон со скоростью примерно 10 км/с, т. е. около одной трети орбитальной скорости Земли. При сравнении этого результата с прежними наблюдениями в Кливленде напрашивается мысль о частичном увлечении эфира, которое уменьшается с высотой. Думается, что пересмотр кливлендских наблюдений с этой точки зрения должен показать, что они находятся в согласии с подобными предположениями, и привести к заключению, что опыт Майкельсона — Морли не должен давать нулевого результата в точном смысле слова и, по всей вероятности, никогда такого результата не давал».

Следует отметить, что Миллер уделил большое внимание доводке прибора, выяснению влияния различных факторов на его показания. Миллером была проделана гигантская измерительная работа: только в 1925 году общее число оборотов интерферометра составило 4400, а число отдельных отсчетов превысило 100 000.

Жаль у них тогда не было компа...

Подводя итоги этих экспериментов, можно отметить следующие факты. Во-первых, скорость «эфирного ветра» становится не равной нулю с увеличением высоты. Во-вторых, скорость «эфирного ветра» зависит от направления в пространстве и меняется со временем. В-третьих, скорость «эфирного ветра» составляет на высоте 250 м всего лишь около 1/3 орбитальной скорости Земли, причем ее максимум наблюдается при ориентации прибора не в плоскости земной орбиты, а в направлении звезды «дзета» созвездия Дракона, отстоящей на 26° от полюса Мира.

После того как Миллер опубликовал свои данные, другие физики провели аналогичные эксперименты, результаты которых представлены в таблице. Некоторые авторы, как следует из этой таблицы, получили нулевые результаты, что бросило тень на материалы Миллера. Однако следует учесть, что отсутствие «эфирного ветра» было установлено либо на уровне моря, либо с помощью приборов со значительно меньшей разрешающей способностью.

И вообще, авторы, не подтвердившие результаты Миллера, потратили минимум времени на подготовку и проведение экспериментов. Если Миллер работал непрерывно с 1887 по 1927 год, то есть потратил на измерение скорости «эфирного ветра» около 40 лет (практически всю свою активную творческую жизнь), уделяя особое внимание чистоте эксперимента, то, например, Р. Кеннеди потратил на всю работу, включая конструирование, изготовление прибора, его отладку, измерения, обработку результатов и их публикацию всего... 1,5 года. Практически так же обстоит дело и с другими аналогичными экспериментами.

Годы                    Авторы                       Высота над уровнем моря, м             Скорость «эфирного ветра», км/с

1881         Майкельсон                                                 0                                                   <18

1887  Майкельсон, Морли                                           0                                                   <7,5

1904     Морли, Миллер                                               0                                                     ~0

1905     Морли, Миллер                                             250                                                 ~3

1921-1925 Миллер                                                    1860                                                 ~10

1926           Кеннеди                                                  1860                                                  ~0

1926     Пикар, Стаэль                                               2500                                                  <7

1927       Иллингсворт                                                  0                                                     ~1

1928 - 1929 Майкельсон, Пис, Пирсон                     1860                                                   ~6

После публикации работ Миллера в обсерватории Маунт Вилсон была проведена конференция, посвященная измерениям скорости «эфирного ветра». На этой конференции присутствовали X. Лоренц, А. Майкельсон и многие другие ведущие физики того времени. Участники конференции признали результаты Миллера заслуживающими внимания; труды конференции были опубликованы.

Но мало кто знает, что после этой конференции Майкельсон вновь вернулся к экспериментам по обнаружению «эфирного ветра»; эту работу он провел совместно с Ф. Писом и Ф. Пирсоном. По результатам этих экспериментов, выполненных в 1929 году, скорость «эфирного ветра» равна примерно 6 км/с. В соответствующей публикации авторы работы отмечают, что скорость «эфирного ветра» составляет примерно 1/50 скорости перемещения Земли в Галактике, равной 300 км/с.

Это примечание весьма знаменательно. Оно говорит о том, что первоначально Майкельсон пытался измерять орбитальную скорость Земли, совершенно упустив из виду, что Земля вместе с Солнцем движется вокруг центра Галактики с гораздо большей скоростью; не учитывалось и то, что сама Галактика движется в пространстве относительно других галактик, и т. д. Естественно, если учитывать все эти движения, то относительные изменения орбитальной составляющей окажутся незначительными.

А как следует относиться к тому обстоятельству, что все положительные результаты получались только на значительной высоте?

Если допустить мысль о том, что «мировой эфир» обладает свойствами реального газа (заметим, что Д. И. Менделеев помещал его в своей периодической системе левее водорода), то эти результаты выглядят совершенно естественными. Как установлено теорией пограничного слоя, на поверхности шара, движущегося в вязкой жидкости или газе, относительная скорость смещения равна нулю. Но по мере удаления от поверхности шара эта скорость возрастает, что и было обнаружено в опытах по измерению скорости «эфирного ветра».

Современная техника позволяет в принципе значительно повысить точность экспериментов по измерению скорости света. Однако проведенный в 1958 г. в Колумбийском университете (США) опыт оказался, к сожалению, некорректным. Была сделана попытка измерить скорость «эфирного ветра» путем обнаружения разности частот микроволнового излучения двух лазеров, ориентированных в противоположных направлениях относительно движения Земли. Точность измерений была очень высокой, и поэтому нулевой результат эксперимента был истолкован как окончательный приговор «мировому эфиру».

Однако авторы совершенно упустили из виду, что в приемниках, неподвижных относительно источника излучения, никаких изменений частоты сигнала не может произойти ни при какой скорости «эфирного ветра»: в этом случае может изменяться лишь фаза, которая не регистрировалась вовсе. Вдобавок к этому измерения выполнялись на уровне моря и поэтому, согласно предварительным данным, должны были дать нулевой результат даже при методически правильной постановке опыта.

Так не стоит ли вспомнить эксперименты на Маунт Вилсон и попытаться измерить скорость «эфирного ветра» еще раз, используя возможности, которые предоставляет исследователям современная техника?    Ведь   сейчас эксперименты такого рода можно выполнять не только на вершинах гор, но и на самолетах и даже на искусственных спутниках Земли. И что если такой эксперимент покажет, что на большой высоте скорость «эфирного ветра» все же не равна нулю?"

А вот современный опыт на интерферометре, внимание (!) - вращающемся не в горизонтальной, а в вертикальной плоскости (!) относительно поверхности Земли. Самое интересное скорее не то, что смещение интерференционных полос в данном эксперименте было обнаружено, что означает наличие движения эфира, то есть и самого эфира в целом, а то, что это смещение ученые уже очень давно наблюдают, изучая звезды и при этом часто называя его "красным" гравитационным смещением :)

Повторение опыта Майкельсона-Морли на интерферометре в вертикальной(!) плоскости

Оригинал взят у michael101063 в В.Ацюковский об ошибочности теории относительности в отношении эфира.

kactaheda.livejournal.com

В.Ацюковский об ошибочности теории относительности в отношении эфира.

Замечательный российский  ученый, автор теории  эфиродинами,  доктор технических  наук В.Ацюковский  еще  в 1980-х  годах  обратил  внимание  на  ошибочность  выводов  теории  относительности Эйнштейна  в  отношении  отрицания  эфира  и  даже  высказал  предположение,  что  это  связано  не  столько  с  ошибочной  позицией,  сколько  с  нечистоплотной    и  явно  заказной  позицией  Эйнштейна  по  отношению к самой теории эфира.

Так,  в  1982  году  в  журнале  "Химия и Жизнь"  вышла  статься  В.Ацюковского  "Эфирный  ветер  и  лицемерие  Эйнштейна",  в  которой  делался  анализ  научных  исследований  в  области  обнаружения  "эфирного ветра"  и  доказывалась  ошибочность  интерпретации  результатов  этих  исследований  и  экспериментов  в  официальной  науке.  Следует  отметить,  что  столь  смелая  работа,  опубликованная  в  те  времена,  чуть не  привела  к  закрытию  этого  журнала  и  как  всегда  не  обошлось  без  иудомасонских  воплей  об  "антисемитизме",  которыми  ученые-сионисты  всегда прикрывают  свою  подрывную деятельность.

Но ведь если  подумать логически:  какое  отношение  имеет  критика  теории  относительности к  "антисемитизму"?  Полнейший  абсурд.  Разве  не  подвергаются  критике  и  другие  научные теории?   Но  как  только  автором  такой  теории  оказывается  представитель  "богоизбранного"  народа,  то  тут  же  талмудические единоверцы  от еврейского нацизма  начинают  свои  громкие  вопли  по  всему  миру,  уводя  дискуссии  от  темы  научного диспута  к  обсуждению  личностей  самих  ученых.   Этот  прием,  кстати,  достаточно  активно  используют  и  всевозможные  "борцы  с  лженаукой",  среди  которых  также  немало  представителей  "богоизбранного"  народа.  На  эту  особенность,  кстати, указывает  и  другой  известный  российский  ученый  -  кандидат физико-математических наук С.Салль.

Но не  будем  уподобляться    религиозным фанатикам  от  иудаизма,  а  потому  предлагаю  перейти к  изучению  самой  статьи.   Вот  что  в  ней  пишет  В.Ацюковский: "В конце прошлого века ученым казалось, что достаточно положить лишь несколько мазков на существующую физическую картину мира, и все в природе станет окончательно ясным и понятным. Как известно, эти благодушные настроения были развеяны опытами, приведшими к созданию квантовой механики и теории относительности.

Один из этих решающих экспериментов известен как опыт Майкельсона — Морли, и он заключался в попытке обнаружить движение Земли относительно неподвижного «мирового эфира» — гипотетической среды, заполняющей все мировое пространство и служащей материалом, из вихрей которого построены все частички вещества. То обстоятельство, что движение Земли относительно «мирового эфира» обнаружить не удалось, вынудило Эйнштейна полностью отказаться от какой бы то ни было среды, относительно которой можно было бы обнаружить движение тел.

Но действительно ли опыт Майкельсона — Морли дал, как сейчас принято безоговорочно считать, нулевой результат? Если обратиться к первоисточникам, то создается впечатление, что все не так просто, как обычно излагается в учебниках по физике. Когда в первых опытах «эфирный ветер» обнаружить не удалось, была создана теория, объясняющая это явление. Но впоследствии, когда аналогичные опыты стали давать результаты, отличные от нуля (почему именно, будет рассказано ниже), им уже не придавали значения, поскольку они не предусматривались теорией...

Цель эксперимента, предложенного и осуществленного А. Майкельсоном в 80-х годах прошлого века, заключалась в попытке обнаружить смещение эфира на поверхности Земли. Ожидалось, что скорость «эфирного ветра» составит около 30 км /с, что соответствует скорости движения Земли вокруг Солнца. Майкельсон воспользовался изобретенным им интерферометром с перпендикулярными лучами света, но не обнаружил ожидаемого эффекта.

Однако не совсем правильно считать результаты даже первых экспериментов строго нулевыми. Описывая эксперимент 1887 года, Майкельсон и его помощник Э. Морли отмечали: «Учитывая только движение Земли по орбите, <....> наблюдения показали, что относительное движение Земли и эфира вероятно меньше чем 1/6 орбитальной скорости Земли и наверняка меньше чем 1/4; это значит, что меньше чем 7,5 км/с».  В дальнейшем опыты по обнаружению «эфирного ветра» Майкельсон доверил Э. Морли и Д. Миллеру, а затем работу продолжал один Миллер.

В сотрудничестве с Э. Морли Д. Миллер сконструировал интерферометр, в четыре раза более чувствительный, чем прибор, использованный в первых экспериментах. Длина оптического пути этого интерферометра составляла 65,3 м; скорости 30 км/с соответствовало смещение на 1,4 интерференционные полосы. В результате в 1904 году было действительно надежно установлено, что наблюдаемая скорость эфирного ветра равна нулю.

Однако вчитаемся в то, что писали авторы работы: «Из всего сказанного явствует, что безнадежно пытаться решить вопрос о движении солнечной системы по наблюдениям на поверхности Земли. Но не исключена возможность, что даже на умеренной высоте над уровнем моря, на вершине какой-нибудь уединенной горы, например, относительное движение может быть замеченным с помощью аппарата вроде описанного в наших опытах».

В 1905 г. Морли и Миллер действительно перенесли интерферометр на гору близ озера Эри, на высоту около 250 м над уровнем моря. На этот раз измерения дали положительный результат: было обнаружено смещение интерференционных  полос, соответствующее скорости «эфирного ветра» относительно поверхности Земли, равной 3 км/с. В 1919 году прибор был размещен в обсерватории Маунт Вилсон, на высоте 1860 м над уровнем моря; измерения, выполненные в 1920, 1924 и 1925 годах, дали для скорости «эфирного ветра» значения, лежащие в пределах 8—10 км/с. При этом было также замечено, что скорость «эфирного ветра» зависит как от положения прибора в пространстве, так и от времени суток и времени года....

В сообщении 1925 года Д. Миллер делает следующий вывод: «Существует определенное смещение интерференционных полос — такое, какое было бы вызвано относительным движением Земли в эфире на Маунт Вилсон со скоростью примерно 10 км/с, т. е. около одной трети орбитальной скорости Земли. При сравнении этого результата с прежними наблюдениями в Кливленде напрашивается мысль о частичном увлечении эфира, которое уменьшается с высотой. Думается, что пересмотр кливлендских наблюдений с этой точки зрения должен показать, что они находятся в согласии с подобными предположениями, и привести к заключению, что опыт Майкельсона — Морли не должен давать нулевого результата в точном смысле слова и, по всей вероятности, никогда такого результата не давал».

Следует отметить, что Миллер уделил большое внимание доводке прибора, выяснению влияния различных факторов на его показания. Миллером была проделана гигантская измерительная работа: только в 1925 году общее число оборотов интерферометра составило 4400, а число отдельных отсчетов превысило 100 000.

Подводя итоги этих экспериментов, можно отметить следующие факты. Во-первых, скорость «эфирного ветра» становится не равной нулю с увеличением высоты. Во-вторых, скорость «эфирного ветра» зависит от направления в пространстве и меняется со временем. В-третьих, скорость «эфирного ветра» составляет на высоте 250 м всего лишь около 1/3 орбитальной скорости Земли, причем ее максимум наблюдается при ориентации прибора не в плоскости земной орбиты, а в направлении звезды «дзета» созвездия Дракона, отстоящей на 26° от полюса Мира.

После того как Миллер опубликовал свои данные, другие физики провели аналогичные эксперименты, результаты которых представлены в таблице. Некоторые авторы, как следует из этой таблицы, получили нулевые результаты, что бросило тень на материалы Миллера. Однако следует учесть, что отсутствие «эфирного ветра» было установлено либо на уровне моря, либо с помощью приборов со значительно меньшей разрешающей способностью.

И вообще, авторы, не подтвердившие результаты Миллера, потратили минимум времени на подготовку и проведение экспериментов. Если Миллер работал непрерывно с 1887 по 1927 год, то есть потратил на измерение скорости «эфирного ветра» около 40 лет (практически всю свою активную творческую жизнь), уделяя особое внимание чистоте эксперимента, то, например, Р. Кеннеди потратил на всю работу, включая конструирование, изготовление прибора, его отладку, измерения, обработку результатов и их публикацию всего... 1,5 года. Практически так же обстоит дело и с другими аналогичными экспериментами.

Годы                    Авторы                       Высота над уровнем моря, м             Скорость «эфирного ветра», км/с

1881         Майкельсон                                                 0                                                   <18

1887  Майкельсон, Морли                                           0                                                   <7,5

1904     Морли, Миллер                                               0                                                     ~0

1905     Морли, Миллер                                             250                                                 ~3

1921-1925 Миллер                                                    1860                                                 ~10

1926           Кеннеди                                                  1860                                                  ~0

1926     Пикар, Стаэль                                               2500                                                  <7

1927       Иллингсворт                                                  0                                                     ~1

1928 - 1929 Майкельсон, Пис, Пирсон                     1860                                                   ~6

После публикации работ Миллера в обсерватории Маунт Вилсон была проведена конференция, посвященная измерениям скорости «эфирного ветра». На этой конференции присутствовали X. Лоренц, А. Майкельсон и многие другие ведущие физики того времени. Участники конференции признали результаты Миллера заслуживающими внимания; труды конференции были опубликованы.

Но мало кто знает, что после этой конференции Майкельсон вновь вернулся к экспериментам по обнаружению «эфирного ветра»; эту работу он провел совместно с Ф. Писом и Ф. Пирсоном. По результатам этих экспериментов, выполненных в 1929 году, скорость «эфирного ветра» равна примерно 6 км/с. В соответствующей публикации авторы работы отмечают, что скорость «эфирного ветра» составляет примерно 1/50 скорости перемещения Земли в Галактике, равной 300 км/с.

Это примечание весьма знаменательно. Оно говорит о том, что первоначально Майкельсон пытался измерять орбитальную скорость Земли, совершенно упустив из виду, что Земля вместе с Солнцем движется вокруг центра Галактики с гораздо большей скоростью; не учитывалось и то, что сама Галактика движется в пространстве относительно других галактик, и т. д. Естественно, если учитывать все эти движения, то относительные изменения орбитальной составляющей окажутся незначительными.

А как следует относиться к тому обстоятельству, что все положительные результаты получались только на значительной высоте?

Если допустить мысль о том, что «мировой эфир» обладает свойствами реального газа (заметим, что Д. И. Менделеев помещал его в своей периодической системе левее водорода), то эти результаты выглядят совершенно естественными. Как установлено теорией пограничного слоя, на поверхности шара, движущегося в вязкой жидкости или газе, относительная скорость смещения равна нулю. Но по мере удаления от поверхности шара эта скорость возрастает, что и было обнаружено в опытах по измерению скорости «эфирного ветра».

Современная техника позволяет в принципе значительно повысить точность экспериментов по измерению скорости света. Однако проведенный в 1958 г. в Колумбийском университете (США) опыт оказался, к сожалению, некорректным. Была сделана попытка измерить скорость «эфирного ветра» путем обнаружения разности частот микроволнового излучения двух мазеров, ориентированных в противоположных направлениях относительно движения Земли. Точность измерений была очень высокой, и поэтому нулевой результат эксперимента был истолкован как окончательный приговор «мировому эфиру».

Однако авторы совершенно упустили из виду, что в приемниках, неподвижных относительно источника излучения, никаких изменений частоты сигнала не может произойти ни при какой скорости «эфирного ветра»: в этом случае может изменяться лишь фаза, которая не регистрировалась вовсе. Вдобавок к этому измерения выполнялись на уровне моря и поэтому, согласно предварительным данным, должны были дать нулевой результат даже при методически правильной постановке опыта.

Так не стоит ли вспомнить эксперименты на Маунт Вилсон и попытаться измерить скорость «эфирного ветра» еще раз, используя возможности, которые предоставляет исследователям современная техника?    Ведь   сейчас эксперименты такого рода можно выполнять не только на вершинах гор, но и на самолетах и даже на искусственных спутниках Земли. И что если такой эксперимент покажет, что на большой высоте скорость «эфирного ветра» все же не равна нулю?"

Вы видите  в  этой  статье  что-то  напоминающее  "антисемитизм"  или  что-то,  из-за  чего  можно  было бы  закрыть  напечатавший  статью  журнал?   Лично я  не  вижу.   И думаю.  что  большинство  адекватных  людей  тоже.  Что же  касается  фанатиков,  защищающих  "незыблимость"  слепо принятых  на  веру  догм,  то  их  место  скорее  в  религии,  а  не  в  науке.

Тем более,  что  касательно теории относительности,  то  отрицание  эфира  - это  не  просто  чья-то  ошибка,  а  целенаправленное  введение  в  заблуждение  всего  человечества.  И  вполне  понятно,  по  заказу  каких  именно  сил  все  это  делалось.

michael101063 ©

michael101063.livejournal.com

Эфирная теория Ацюковского

Это статья о неакадемическом направлении исследований. В ней могут содержаться сведения и гипотезы, не признаваемые современной наукой.Подробности — в статье и на странице обсуждения.

Эфирная теория Ацюковского, эфиродинамика — разработанная Владимиром Ацюковским гипотеза в физике, восстанавливающая представления о существовании в мировом пространстве единой среды — газоподобного эфира. Не признана научным сообществом.

Теория

Согласно данной гипотезе эфир обладает всеми свойствами обычного реального вязкого сжимаемого газа, из которого состоят все материальные образования, движения которого суть силовые поля взаимодействий. Сторонники гипотезы утверждают, что на основе этих представлений разработаны вихревые модели структур основных устойчивых микрочастиц — протона, нейтрона, электрона, позитрона, фотона, модели ядер с учетом энергий взаимодействий нуклонов, модели атомов и некоторых молекул; разработаны модели электрического и магнитного полей, вскрыта сущность электрического, магнитного, сильного и слабого ядерных взаимодействий, сущность гравитационного взаимодействия. Показан кругооборот эфира в пределах устойчивой спиральной галактики и механизм взаимодействия галактик.

Эксперименты

Проведенные экспериментальные исследования касались в основном электротехнических приложений. Полученные формульные выражения для взаимодействий контуров оказались существенно отличными от максвелловских, что дало основание для постановки экспериментов по проверке этого положения. В результате выявилось полное подтверждение полученных выражений, что дало основание для разработки методики наведения эталонных помех в линиях проводных связей на борту ЛА, опубликованной в ГОСТ 26.807-87; в дальнейшем выяснилось полное совпадение этой методики с аналогичной методикой, опубликованной позже в американском стандарте DO-160.

Проведённые исследования закона полного тока выявили существенные отклонения этого закона от максвелловского уже при токах в 0,1 А, что дает основания для введения характеристики — плотность магнитного поля в вакууме. Проведены исследования и доказано экспериментально существование продольного электрического поля, распространяющегося вдоль оси диполя с сосредоточенными параметрами.

Однако, методологическая корректность описанных экспериментов вызывает сомнения. Независимыми исследователями описанные результаты не воспроизводились. Математический аппарат, используемый Ацюковским, также крайне сомнителен и не выдерживает тривиальной проверки на внутреннюю непротиворечивость. Один из ярких примеров — деление скалярной величины на вектор.

Цель авторов гипотезы эфира

Авторы гипотезы эфира не ставят своей целью опровержение других теорий, а делает попытку построения полноценной науки в рамках исключительно классической физики. Принятием эфира как мировой среды, предполагалось объяснить эффект инвариантности скорости света относительно выбора инерциальной системы отсчёта (и, вероятно, инвариантность уравнений Максвелла) с позиции классической физики, т. е. в терминах классической Галилеевой относительности без определения пространства Минковского. Тем самым предполагалось сделать ненужной релятивистскую модель.

Оценка теории В. А. Ацюковского научным сообществом

Из приведённой статьи читателю не следует делать вывод о каком-либо признании «неправильности электродинамики Максвелла» или правильности гипотезы Ацюковского научным сообществом. Гипотеза Ацюковского — непризнана. Физики не имеют оснований сомневаться в правильности теории относительности Эйнштейна или электродинамики Максвелла (в рамках их применимости) и не видят оснований для введения эфирной концепции (подробнее в статье «Эфир»). Разработкой эфирных теорий занимаются люди, не имеющие отношения к современной науке, и, как правило, даже не имеющие соответствующего образования. Упоминание эфира большинством физиков считается однозначным признаком безграмотности автора.

Литература

Ссылки

mediaknowledge.ru


Смотрите также